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CHAPTER

Exponential and Logarithmic Series

1

  1. In the following chapter we are about to obtain an expansion in powers of x
for the expression ax, where both a and x are real, and also to obtain an expansion
for loge (1 + x), where x is real and less than unity, and e stands for a quantity to be
defined.

  2. To find the value of the quantity ( )11 ,+
n

n  when n becomes infinitely great and

is real.

Since 1 1,<
n  we have, by the Binomial Theorem,

( ) ( ) ( )( )
2 3

1 1 1 1 1 2 11 1 ...
1 2 1 2 3
- - -+ = + ◊ + + +
◊ ◊ ◊

n n n n n nn
n n n n

           
( )( ) ( )( )( )1 2 1 2 31 1 1 1 1 11

1 1 ...
1 2 3 4

- - - - --
= + + + + +

◊
n n n n nn ... (1)

This series is true for all values of n, however great. Make then n infinite and the
right-hand side

           
1 1 11 1 ... ad inf.
2 3 4

= + + + + + ... (2)

Hence the limiting value, when n is infinite, of ( )11+
n

n  is the sum of the series.

1 1 11 1 ... ad inf.
2 3 4

+ + + +

The sum of this series is always denoted by the quantity e.
Hence we have

( )
=•

n

n

1Lt 1 + = e,
n

where Lt
=•n

 stands for “the limit when n = ∞.”
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Cor. By putting 1 ,=n
m  it follows (since m is zero when n is infinity) that

( ) ( )1

0

1Lt 1 Lt 1 .
= =•

+ = + =
n

m

m n
m e

n
  3. This quantity e is finite.

For since 2
1 1 1 ,
3 2 2 2
< <

◊

3
1 1 1 ,
4 2 2 2 2
< <

◊ ◊

. . . . . . . . . . . . . . .

we have

2 3
1 1 11 1
2 2 2

< + + + +e  ...ad inf.

  
11 11 2

< +
-

  < 1 + 2 i.e. < 3.
Also clearly e > 2.
Hence it lies between 2 and 3.
By taking a sufficient number of terms in the series, it can be shown that

e = 2.7182818285...
  4. The quantity e is incommensurable.

For, if possible, suppose it to be equal to a fraction ,p
q  where p and q are whole

numbers.
We have then

1 1 1 1 11 1 ... ...
2 3 1 2

= + + + + + + + +
+ +

p
q q q q ...(1)

Multiply this equation by q , so that all the terms of the series (1) become integers

except those commencing with .
1+

q
q  Hence we have

1-p q = whole number + ...,
1 2 3
+ + +

+ + +
q q q

q q q

i.e. an integer = ( )( ) ( )( )( )
1 1 1 ...

1 1 2 1 2 3
+ + +

+ + + + + +q q q q q q  ...(2)
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But the right-hand side of this equation is 1 ,
1

>
+q

and

( ) ( )2 3
1 1 1 ...,

1 1 1
< + + +

+ + +q q q

i.e.
1 11 ,

1 1
Ê ˆ< ∏ -Ë ¯+ +q q

i.e.
1 .<
q

Hence the right-hand side of (2) lies between 1 1 and ,
1+q q

 and therefore a fraction

and so cannot be equal to the left-hand side.
Hence our supposition that e was commensurable is incorrect and it therefore must

be incommensurable.
  5. Exponential Series: When x is real, to prove that

 
2 3

1 ...  .,
2 3

= + + + +x x xe x ad inf

and that

( )
2

21 log log ... .
2

= + + +x
e e

xa x a a ad inf

When n is greater than unity, we have

  ( ){ } ( )1 11 1+ = +
xn nx

n n

    
( ) ( )( )

2 3
1 1 1 1 2 11 ...

1 2 1 2 3
- - -= + + + +

◊ ◊ ◊
nx nx nx nx nxnx

n n n

   ( ) ( )( )1 1 2

1 .
1 2 1 2 3

- - -
= + + + +

◊ ◊ ◊
…

x x x x xn n nx

In this expression make n infinitely great. The left-hand becomes, as in Art. 2, ex.
The right-hand becomes

3 3
1 ...

2 3
+ + + +x xx

Hence we have

... ad inf.
2 3

x x xe = 1 + x + + +
2 3

...(1)

Let   a = ec, so that c = loge a.
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∴
2 2 3 3

1 ... ad inf.
2 3

= = + + + +x cx c x c xa e cx

by substituting cx for x in the series (1).

∴ ( ) ( ) ... ad inf.
2 3

2 3x
e e e

x xa = 1 + xlog a + log a + log a +
2 3 ...(2)

  6. It can be shown (as in C. Smith’s Algebra, Art. 278) that the series (1), and
therefore (2), of the last article is convergent for all real values of x.

  7. EXAMPLE 1. Prove that ( )1 1 1 11 ... 
2 3 5

- = + + +e ad inf.
e

By equation (1) of Art. 5 we have, by putting x in succession equal to 1 and −1,

      
1 1 1 11
1 2 3 4

e = + + + + + ... ad inf.

and
1 1 1 1 11

1 2 3 4
e- = - + - + - ... ad inf.

Hence, by subtraction,

    
1 1 12 1 ... ,

3 5
e e- Ê ˆ- = + + +Á ˜Ë ¯

i.e.  1 1 1 1
1

2 3 5
e

e
Ê ˆ- = + + +Á ˜Ë ¯ ... ad inf.

EXAMPLE 2. Find the sum of the series

1 2 1 2 3 1 2 3 41
2 3 4
+ + + + + ++ + + + ... ad inf.

The nth term = 
1 2 3 ... n

n
+ + + +

=
( )1 1

2
n n

n

+

= 
( )1 1 1 1 2 1 1 2 ,

2 1 2 1 2 2 1
n n
n n n n

È ˘+ - + È ˘= = +Í ˙ Í ˙- - - -Î ˚ Î ˚
provided that n > 2.

Similarly,

the (n − 1)th term = 
1 1 2 ,
2 3 2n n
È ˘+Í ˙- -Î ˚

. . . . . . . . . . . . . . . . . . . . . . . . . .

the 4th term = 
1 1 2 ,
2 2 3
È ˘+Í ˙
Î ˚
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the 3rd term = 
1 1 2 .
2 1 2
È ˘+Í ˙
Î ˚

Also  the 2nd term = 
1 21 .
2 1
È ˘+Í ˙
Î ˚

and the 1st term = 
1 2 .
2 1
È ˘
Í ˙Î ˚

Hence, by addition, the whole series

                = 
1 1 1 11 ... ad inf.
2 1 2 3
È ˘+ + + +Í ˙
Î ˚

1 1 1 12 1 ... ad inf.
2 1 2 3

È ˘+ ◊ + + + +Í ˙
Î ˚

                = 
1 3 .
2 2

ee e◊ + =

  8. Logarithmic Series: To prove that, when y is real and numerically < 1, then

( ) 2 3 41 1 1log 1 ...
2 3 4

+ = - + - +e y y y y y ad inf.

In the equation (2) of Art. 5, put
a = 1 + y,

and we have

(1 + y)x = ( ) ( ){ }
2 2

1 log 1 log 1 ...
2

+ + + + +e e
xx y y ...(1)

But, since y is real and numerically < unity, we have

(1 + y)x = 
( ) ( )( )2 31 1 21 ...
1 2 1 2 3

x x x x xx y y y- - -+ ◊ + + +
◊ ◊ ◊ ...(2)

The series on the right-hand side of (1) and (2) are equal to one another and both
convergent, when y is numerically < 1. Also it could be shown that the series on the
right-hand side of (2) is convergent when it is arranged in powers of x. Hence we
may equate like powers of x.

Thus we have

( ) ( )( ) ( )( )( )2
3 41 2 1 2 3log 1

1 2 1 2 3 1 2 3 4e
yy y y y- - - - -+ = - + + +
◊ ◊ ◊ ◊ ◊ ◊

... ad inf.,

i.e. ( )  ad inf.+ = - + - +2 3 4
e

1 1 1log 1 y y y y y
2 3 4 ...(3)



6   NEW AGE CLASSICAL MATH SERIES—PLANE TRIGONOMETRY PART–II

  9. If y = 1, the series (3) of the previous article is equal to

1 1 11
2 3 4

- + - + ... ad inf.

which is known to be convergent.

If y = −1, it equals 1 1 11
2 3 4

- - - - ... ad inf. which is known to be divergent.

In addition therefore to being true for all values of y between −1 and +1, it is true
for the value y = 1; it is not however true for the value y = −1.

  10. Calculation of logarithms to base e.
In the logarithmic series, if we put y = 1, we have

  1 1 1log 2 1
2 3 4

= - + - +e
... ad inf. ...(1)

If we put
1 ,
2

y =

we have

3 1log 3 log 2 log log 1
2 2e e e e

Ê ˆ- = = +Á ˜Ë ¯

                   = 2 3 4
1 1 1 1 1 1 1 ...
2 2 3 42 2 2
- ◊ + ◊ - ◊ + ...(2)

If we put          y = 
1 .
3

we have

2 3 4
1 1 1 1 1 1 1 1log 4 log 3 log 1 ...
3 3 2 3 43 3 3e e e

Ê ˆ- = + = - ◊ + ◊ - ◊ +Á ˜Ë ¯
...(3)

From these equations we could, by taking a sufficient number of terms, calculate
loge 2, loge 3 and loge 4.

It would be found that a large number of terms would have to be taken to give the
values of these logarithms to the required degree of accuracy. We shall therefore obtain
more convenient series.

  11. By Art. 8 we have

( ) 2 3 41 1 1log 1 ...
2 3 4e y y y y y+ - + - + ...(1)

and, by changing the sign of y,

( ) 2 3 41 1 1log 1 ...
2 3 4

- = - - - - +e y y y y y ...(2)

In order that both these series may be true y must be numerically less than unity.
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By subtraction, we have

( ) ( ) 1log 1 log 1 log
1e e e

yy y
y

++ - - =
-

3 51 12 ...
3 5

y y yÈ ˘= + + +Í ˙Î ˚ ...(3)

Let                 y = ,-
+

m n
m n

where m and n are positive integers and m > n, so that

           
1 .
1
+ =
-

y m
y n

The equation (3) becomes

3 51 1log 2 ...
3 5e

m m n m n m n
n m n m n m n

È ˘- - -Ê ˆ Ê ˆ Ê ˆ= + + +Í ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯+ + +Î ˚
...(4)

Put m = 2, n = 1 in (4) and we get loge 2.
Put m = 3, n = 2 and we get loge 3 − loge 2, and therefore loge 3.
By proceeding in this way we get the value of the logarithm of any number to

base e.
  12. Logarithms to base 10. The logarithms of the previous article, to base e, are

called Napierian or natural logarithms.
We can convert these logarithms into logarithms to base 10.
For, by Art. 147 (Part I.), we have, if N be any number,

loge N = log10 N × loge 10.

                    ∴ log10 N = loge N × 
1 .

log 10e

Now, loge 10 can be found as in the last article and then 
1

log 10e
 is found to be

0.4342944819...,
Hence, log10 N = loge N × 0.43429448...,

so that the logarithm of any number to base 10 is found by multiplying its logarithm
to base e by the quantity 0.43429448... This quantity is called the Modulus.

EXAMPLES I

Prove that

1. ( )11 1 1 11 ...
2 2 4 6

-+ = + + + +e e

2. ) )1 1 1 1 1 11 ... 1 ... 1.
1 2 3 1 2 3

Ê Ê+ + + + - + - + =Ë Ë
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3. ) )2 21 1 1 1 11 ... 1 1 ... ...
2 4 6 3 5

Ê Ê+ + + + = + + + +Ë Ë

4. 2 3 41 ... .
3 5 7 2

+ + + + = e 5. 12 4 6 ... .
3 5 7

-+ + + = e

6.

1 1 1 ...
2 4 6 1.

1 1 11 ...
3 5

+ + +
-=
++ + +

e
e 7.

3 3 32 3 41 ... 5 .
2 3 4

+ + + + = e

Find the sum of the series

8. 1 1 11
2 3 4

- + - + ... ad inf.

9. 2 3 4
1 1 1 1 1 1 1 ...
2 2 3 42 2 2
- ◊ + ◊ - ◊ +  ad inf.

Prove that

10. ( ) ( )2 31 1 ... log log .
2 3 e e

a b a b a b a b
a a a
- - -+ + + = = -

11. ( )3 51 1 1log 2 ... ad inf.
1 3 5
+ = + + +
-e

x x x x
x .

12. 3 5
1 1 1 1log 2 ... ad inf. , if  > 1.
1 3 5

+ Ê ˆ= + + +Ë ¯-e
x x
x x x x

13. ( ) ( )
2 3 4

12 5 9 17 2 1log 1 3 2 3 ... 1 ...,
2 3 4

- ++ + = - + - + + - +
n

n n
e

x x xx x x x
n

provided that 2x be not > 1.

14. 2 loge x − loge(x + 1) − loge(x − 1) = 2 4 6
1 1 1 ...,

2 3
+ + +

x x x
 if x > 1.

15. loge 2 = 1 1 1 ...
1 2 3 4 5 6

+ + +
◊ ◊ ◊  ... ad inf.

16. 1 1 1 1log 2 ...
2 1 2 3 3 4 5 5 6 7

- = + + +
◊ ◊ ◊ ◊ ◊ ◊e  ... ad inf

17.
( )
( )

3 5
cos1 1 1 4tan tan tan ... log ,  if < .

3 5 2 4cos 4

pq - pq + q + q + = q
pq +

18. If θ be > 2
p  and < π, prove that

3 51 1(1)sin sin sin ...
3 5

q + q + q + ... ad inf.

= 3 51 12 cot cot cot ... ad inf.
2 3 2 5 2
q q qÈ ˘+ + +Í ˙Î ˚ ,
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and, if θ be > 0 and < 2
p , prove that

( ) 2 4 61 1 12 sin sin sin ...
2 4 6

q + q + q +  ... ad inf.

= 2 6 101 12 tan tan tan ... ad inf.
2 3 2 5 2
q q qÈ ˘+ + +Í ˙Î ˚

19. If tan2θ < 1, prove that

2 4 61 1tan tan tan ... ad inf.
2 3

q - q + q -

= 2 4 61 1sin sin sin ... ad inf.
2 3

q + q + q +

20. Prove that, if 2θ be not a multiple of π,

3 51 1logcot cos2 cos 2 cos 2 ... ad inf.
3 5

q = q + q + q +

21. Prove that the coefficient of xn in the expansion of
{loge(1 + x)}2

is  
( )2 1 1 1 11 ... .

2 3 1
- È ˘+ + + +Í ˙Î ˚-

n

n n
22. Use the methods of Arts. 11 and 12 to prove that

 log10 2 = 0.30103...
and  log10 3 = 0.47712...

23. Draw the curve y = loge x.
[If x be negative,  y is imaginary; when x is zero,  y equals − ∞; when x is the unity,
y is nothing; when x is positive and > 1,  y is always positive; when x is infinity,  y is
infinity also.]

24. Draw the curve y = log10 x and state the geometrical relation between it and the curve of
the last example.
[Use Art. 147, Part I.]

25. Draw the curve y = ax.
  13. The two following limits will be required in the next chapter but one.

  14. To prove that the value of cos
na

n
Ê ˆ
Á ˜Ë ¯ , when n is infinite, is unity.

We have
1
22cos 1 sin .Ê ˆ= -Á ˜Ë ¯

a a
n n

∴

2

2

sin1 2
22 2 sincos 1 sin 1 sin .

-
-È ˘

Ê ˆ Ê ˆ Ê ˆÍ ˙= - = -Á ˜ Á ˜ Á ˜Í ˙Ë ¯ Ë ¯ Ë ¯Î ˚

n a
n nn a

n
a a a
n n n
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Now, by putting

2sin ,a m
n

- =

We have

{ } { }2

1
1

2 sin
0

Lt 1 sin Lt 1 .
-

=• =
- = - =

a
mn

n m

a m e
n

(Art. 2, Cor.)

Also, by Art. 228 (Part I.),

2sin
2
n a

n

= 

2

2sin

2

Ê ˆ
Á ˜ ¥Á ˜
Á ˜Ë ¯

a
an

a n
n

 = 1 × 0 = 0,

when n is infinite.
Hence, when n is infinite,

0cos 1.
na e

n
È ˘ = =Í ˙Î ˚

Alter. This limit may also be found by using the logarithmic series.

For, putting  cos ,
na u

n
Ê ˆ =Á ˜Ë ¯  we have

2log log cos log cos
2e e e

a n au n
n n

= =

         = 2log 1 sin
2 e
n a

n
Ê ˆ-Á ˜Ë ¯

         2 4 61 1sin sin sin ... .
2 2 3
n a a a

n n n
Ê ˆ= - + + +Á ˜Ë ¯

(Art. 8.)

The series inside the bracket lies between 2sin a
n

 and the series

2 4 6sin sin sin ...a a a
n n n
+ + + ad inf.,

i.e. lies between

2

2

2

sin
sin and ,

1 sin-

a
a n

an
n


