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0.3 Abelian groups

The goal of this section is to look at several properties of abelian groups and see how they
relate to general properties of modules. I’ll usually repeat the definitions I’ve already given
for modules, to keep this section more or less independent of the previous one. We first need
to write down the definition of a group. To shorten it a bit, we use the definition that a
binary operation is one in which the closure property holds.

DEFINITION 0.3.1. A group is a nonempty set G with a binary operation · defined on G

such that the following conditions hold:
(i) for all a, b, c ∈ G, we have a · (b · c) = (a · b) · c;
(ii) there exists an element 1 ∈ G such that 1 · a = a and a · 1 = a for all a ∈ G;

(iii) for each a ∈ G there exists an element a−1 ∈ G such that a ·a−1 = 1 and a−1 ·a = 1.

DEFINITION 0.3.2. The group G is said to be abelian if a · b = b · a for all a, b ∈ G.

If the group G is abelian, it is customary to denote the operation additively, using a +
symbol, and to use the symbol 0 for the identity element. Using additive notation, we can
rewrite the axioms for an abelian group in a way that points out the similarities with vector
spaces and fields.

An abelian group is a nonempty set A with a binary operation + defined on A such that
the following conditions hold:

(i) (Associativity ) for all a, b, c ∈ A, we have a+ (b+ c) = (a+ b) + c;
(ii) (Commutativity ) for all a, b ∈ A, we have a+ b = b+ a;

(iii) (Existence of an additive identity ) there exists an element 0 ∈ A such that 0+a = a

for all a ∈ A;
(iv) (Existence of additive inverses ) for each a ∈ A there exists an element −a ∈ A such

that −a+ a = 0.

You should notice that any field is an abelian group under addition. Furthermore, under
multiplication, the set of nonzero elements of any field must also form an abelian group.
Of course, in this case the two operations are not independent–they are connected by the
distributive laws.

The definition of an abelian group is also useful in discussing vector spaces and modules.
In fact, we can define a vector space to be an abelian group together with a scalar multipli-
cation satisfying the relevant axioms. Using this definition of a vector space as a model, we
can state the definition of a module in the following way.

DEFINITION 0.3.3. A left module over the ring R is an abelian group M , together with a
scalar multiplication · defined on M such that the following conditions hold:

(i) a · x ∈M ;
(ii) a · (b · x) = (ab) · x;

(iii) (a+ b) · x = a · x+ b · x;
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(iv) a · (x+ y) = a · x+ a · y;
(v) 1 · x = x;

for all a, b ∈ R and all x, y ∈M .

But the point of this section is to look at abelian groups that don’t have a given module
structure. I’m sure that soon after you first met the definition of a group you started to use
the shorthand notation a + a = 2a, a + a + a = 3a, and so on, for any element a in any
abelian group. When the inverse of a is involved, we can write (−a) + (−a) = −2a, etc. If
we also agree that 0a = 0, then we really have a “scalar multiplication” in which the scalars
come from the ring Z of integers. The whole point is that this “multiplication” already
comes built into the addition defined on the group. You should check all of the necessary
axioms, to make sure you understand why the next proposition is true.

PROPOSITION 0.3.4. Every abelian group has a natural structure as a module over the
ring Z.

As with vector spaces, one goal is to be able to express an abelian group in terms of
simpler building blocks. For vector spaces we can use one-dimensional spaces as the building
blocks; for abelian groups, it seems natural to use the simple abelian groups.

Recall that in an arbitrary group G, a subgroup N ⊆ G is called a normal subgroup if
gxg−1 ∈ N , for all x ∈ N and all g ∈ G. Then G is said to be a simple group if its only normal
subgroups are {1} and G. If the group A is abelian, then all subgroups are normal, and so
A is simple iff its only subgroups are the trivial subgroup (0) and the improper subgroup
A. The same definition is given for modules: a nonzero module M is a simple module if its
only submodules are (0) and M . When you view an abelian group as a Z-module, then, of
course, the two definitions coincide.

Compared to the classification of all simple groups, it is absolutely trivial to give a
complete classification of all simple abelian groups. Even though I certainly hope that you
remember the proof, I’ve decided to outline it anyway.

LEMMA 0.3.5. Any cyclic abelian group is isomorphic to Z or Zn, for some n.

Outline of the proof: Let A be a cyclic abelian group that is generated by the single element
a. Define the group homomorphism f : Z→ A by setting f(n) = na, for all n ∈ Z. Note that
f maps Z onto A since f(Z) = Za = A. If f is one-to-one, then A is isomorphic to Z. If f
is not one-to-one, we need to use the fundamental homomorphism theorem (Theorem 1.2.7)
and the fact that every subgroup of Z is cyclic to show that A is isomorphic to Zn, where
n is the smallest positive integer such that na = 0. 2

PROPOSITION 0.3.6. An abelian group is simple iff it is isomorphic to Zp, for some prime
number p.

Proof: First, let A be an abelian group isomorphic to Zp, where p is a prime number.
The isomorphism preserves the subgroup structure, so we only need to know that Zp has
no proper nontrivial subgroups. This follows from the general correspondence between
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subgroups of Zn and divisors of n, since p is prime precisely when its only divisors are ±1
and ±p, which correspond to the subgroups Zp and (0), respectively.

Conversely, suppose that A is a simple abelian group. Since A is nonzero, pick any
nonzero element a ∈ A. Then the set Za = {na | n ∈ Z} is a nonzero subgroup of A, so
by assumption it must be equal to A. This shows that A is a cyclic group. Furthermore,
A can’t be infinite, since then it would be isomorphic to Z and would have infinitely many
subgroups. We conclude that A is finite, and hence isomorphic to Zn, for some n. Once
again, the correspondence between subgroups of Zn and divisors of n shows that if Zn is
simple, then n must be a prime number. 2

A module M is said to be semisimple if it can be expressed as a sum (possibly infinite)
of simple submodules (see Definition 2.3.1 (b)). Although the situation for abelian groups
is more complicated than for vector spaces, it is natural to ask whether all abelian groups
are semisimple. This isn’t true, as the next example shows. That makes it interesting to try
to find out which abelian groups actually are semisimple.

EXAMPLE 0.3.1. The group Z4 is not a semisimple Z-module. First, Z4 is not
a simple group. Secondly, it cannot be written nontrivially as a direct sum of
any subgroups, since its subgroups lie in a chain Z4 ⊃ 2Z4 ⊃ (0), and no two
proper nonzero subgroups intersect in (0).

EXAMPLE 0.3.2. The group Z6 is a semisimple Z-module. To see this, define
f : Z6 → Z2 ⊕Z3 by setting f(0) = (0, 0), f(1) = (1, 1), f(2) = (0, 2), f(3) =
(1, 0), f(4) = (0, 1), f(5) = (1, 2). You can check that this defines an isomor-
phism, showing that Z6 is isomorphic to a direct sum of simple abelian groups.

Exercise 2.3.2 in the text asks you to classify all finite semisimple abelian groups, and
the previous example should give you a big hint. The function defined in the example is
a special case of a more general result that is usually referred to as the Chinese remainder
theorem (this result is given more generally for rings, in Theorem 1.2.12). The proof of the
next proposition makes use of the same function.

PROPOSITION 0.3.7. If k = mn, where m and n are relatively prime integers, then Zk is
isomorphic to Zm ⊕ Zn.

Outline of the proof: Define f : Zk → Zm⊕Zn by f([x]k) = ([x]m, [x]n), for all x ∈ Z. Here
I have been a bit more careful, by using [x]k to denote the congruence class of x, modulo k.
It is not hard to show that f preserves addition. The sets Zk and Zm ⊕ Zn are finite and
have the same number of elements, so f is one-to-one iff it is onto, and therefore proving
one of these conditions will give the other. (Actually, it isn’t hard to see how to prove both
conditions.) Showing that f is one-to-one depends on the fact that if x is an integer having
both m and n as factors, then it must have mn as a factor since m and n are relatively prime.
On the other hand, the usual statement of the Chinese remainder theorem is precisely the
condition that f is an onto function. 2
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COROLLARY 0.3.8. Any finite cyclic group is isomorphic to a direct sum of cyclic groups
of prime power order.

I have to admit that the corollary depends on an important result in Z: every positive
integer can be factored into a product of prime numbers. Grouping the primes together, the
proof of the corollary uses induction on the number of distinct primes in the factorization.

This basic result has implications for all finite groups. The cyclic group Zn also has a
ring structure, and the isomorphism that proves the corollary is actually an isomorphism of
rings, not just of abelian groups. To use this observation, suppose that A is a finite abelian
group. Let n be the smallest positive integer such that na = 0 for all a ∈ A. (This number
might be familiar to you in reference to a multiplicative group G, where it is called the
exponent of the group, and is the smallest positive integer n such that gn = 1 for all g ∈ G.)
For the additive group A, we usually refer to nZ as the annihilator of A. You can check
that because na = 0 for all a ∈ A, we can actually give A the structure of a Zn-module.

Next we can apply a general result (Proposition 2.2.7) that says that if a ring R can be
written as a direct sum R = I1⊕· · ·⊕In of two-sided ideals, then each Ij is a ring in its own
right, and every left R-module M splits up into a direct sum M1 ⊕ · · · ⊕Mn, where Mj is a
module over Ij . Applying this to Zn, we can write Zn as a direct sum of rings of the form
Zpk , where p is a prime, and then the group A breaks up into A1 ⊕ · · · ⊕ An, where each
Aj is a p-group, for some prime p. (Recall that a group G is a p-group if every element of
G has order p.) This argument proves the next lemma. (You can also prove it using Sylow
subgroups, if you know about them.)

LEMMA 0.3.9. Every abelian group can be written as a direct sum of p-groups.

The decomposition into p-groups occurs in one and only one way. Then it is possible to
prove that each of the p-groups splits up into cyclic groups of prime power order, and so we
have the following fundamental structure theorem for finite abelian groups.

THEOREM 0.3.10. Any finite abelian group is isomorphic to a direct sum of cyclic groups
of prime power order.

I will end the section with a proof of the fundamental structure theorem, but I want
to first discuss some of the directions it suggests for module theory. First of all, the hope
was to construct finite abelian groups out of ones of prime order, not prime power order.
The only way to do this is to stack them on top of each other, instead of having a direct
sum in which the simple groups are lined up one beside the other. To see what I mean by
“stacking” the groups, think of Z4 and its subgroups Z4 ⊃ 2Z4 ⊃ (0). It might be better to
picture them vertically.

Z4

|
2Z4

|
(0)
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The subgroup 2Z4 = {0, 2} ∼= Z2 is simple, and so is the factor module Z4/2Z4
∼= Z2. I

think of this as having Z2 stacked on top of Z2, and the group is structured so tightly that
you can’t even find an isomorphism to rearrange the factors.

In Definition 2.5.1, a module M is said to have a composition series of length n if there
is a chain of submodules M = M0 ⊃ M1 ⊃ · · · ⊃ Mn = (0) for which each factor module
Mi−1/Mi is a simple module. Thus we would say that Z4 has a composition series of length
2. This gives a measurement that equals the dimension, in the case of a vector space. It
is also true that the length of a cyclic group of order pn is precisely n. It can be shown
(Theorem 2.5.2) that if M has a composition series of length n, then every other composition
series also has length n, so this is an invariant of the module. Furthermore, the same simple
modules show up in both series, with the same multiplicity.

The idea of a composition series is related to two other conditions on modules. A module
is said to satisfy the ascending chain condition, or ACC, if it has no infinite chain of ascending
submodules; it is said to satisfy the descending chain condition, or DCC, if it has no infinite
chain of descending submodules. Modules satisfying these conditions are called Noetherian
or Artinian, respectively. Proposition 2.5.4 shows that a module has finite length iff it
satisfies both the ACC and DCC. As an example to keep in mind, let’s look at the ring of
integers, which has has ACC but not DCC. Since mZ ⊆ nZ iff n | m, generators get smaller
as you go up in Z, and larger as you go down. Any set of positive integers has a smallest
element, so we can’t have any infinite ascending chains, but, for example, we can construct
the infinite descending chain 2Z ⊃ 4Z ⊃ 8Z ⊃ · · ·.

The cyclic groups of prime power order play a crucial role in the structure of finite
abelian groups precisely because they cannot be split up any further. A module M can be
expressed as a direct sum of two submodules M1 and M2 iff M1 ∩M2 = (0) and M1 +M2 =
M . In the case of a cyclic group of prime power order, the subgroups form a descending
chain, and so any two nonzero subgroups have a nonzero intersection. In Definition 2.5.5,
a module is called indecomposable if it cannot be written as a direct sum of two nonzero
submodules. With this terminology, the cyclic groups of prime power order are precisely the
indecomposable abelian groups. The major results in this direction are Proposition 2.5.6
and Theorem 2.5.11 (the Krull-Schmidt theorem), which show that any module with finite
length can be written as a direct sum of indecomposable submodules, and this decomposition
is unique up to isomorphism and the order of the summands.

After this rather lengthy preview, or review, as the case may be, it is time to move on to
study general rings and modules. The next results present a proof of the structure theorem
for finite abelian groups, but you should feel free to skip them. You might want to come
back to this proof later, to compare it with the proof given in Section 2.7, where we will
prove the structure theorem for finitely generated modules over a principal ideal domain.

LEMMA 0.3.11. Let A be a finite abelian p-group.
(a) Let a ∈ A be an element of maximal order, and let b + Za be any coset of A/Za.

Then there exists d ∈ A such that d+ Za = b+ Za and Zd ∩ Za = (0).
(b) Let a ∈ A be an element of maximal order. Then there exists a subgroup B with

A ∼= Za⊕B.
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Proof: (a) The outline of part (a) is to let s be the smallest positive integer such that
sb ∈ Za. Then we solve the equation sb = sx for elements x ∈ Za and let d = b− x.

Using o(x) for the order of an element x, let s be the order of b + Za in the factor
group G/Za. Then sb ∈ Za, and we can write sb = (qt)a for some exponent qt such that
t = pβ for some β and p - q. Then qa is a generator for Za, since q is relatively prime to
o(a). Since s is a divisor of the order of b, we have o(b)/s = o(sb) = o((qt)a) = o(a)/t, or
simply, o(b) · t = o(a) · s. All of these are powers of p, and so o(b) ≤ o(a) implies that s|t,
say t = ms. Then x = (qm)a is a solution of the equation sb = sx. If d = b − x, then
d+ Za = b+ Za and so sd = sb− sx = sb− sb = 0. Therefore Zd∩Za = (0), since nd ∈ Za
implies n(b − x) = nb − nx ∈ Za. Thus nb ∈ Za implies n(b + Za) = Za in G/Za, so s|n
and nd = 0.

(b) The outline of this part is to factor out Za and use induction to decompose A/Za
into a direct sum of cyclic groups. Then part (a) can be used to choose the right preimages
of the generators of A/Za to generate the complement B of Za.

We use induction on the order of A. If |A| is prime, then A is cyclic and there is nothing
to prove. Consequently, we may assume that the statement of the lemma holds for all groups
of order less than |A| = pα. If A is cyclic, then we are done. If not, let Za be a maximal
cyclic subgroup, and use the induction hypothesis repeatedly to write A/Za as a direct sum
B1 ⊕B2 ⊕ · · · ⊕Bn of cyclic subgroups.

We next use part (a) to choose, for each i, a coset ai+Za that corresponds to a generator
of Ai such that Zai ∩ Za = (0). We claim that A ∼= Za ⊕ B for the smallest subgroup
B = Za1 + Za2 + · · ·+ Zan that contains a1, a2, . . ., an.

First, if x ∈ Za∩(Za1+· · ·+Zan), then x = m1a1+· · ·+mnan ∈ Za for some coefficients
m1, . . . ,mn. Thus x + Za = (m1a1 + · · · + mnan) + Za = Za, and since A/Za is a direct
sum, this implies that miai + Za = Za for each i. But then miai ∈ Za, and so miai = 0
since Zai ∩ Za = (0). Thus x = 0.

Next, given x ∈ A, express the coset x+ Za as (m1a1 + · · ·+mnan) + Za for coefficients
m1, . . ., mn. Then x ∈ xZa, and so x = ma+m1a1 + · · ·+mnan for some m.

Thus we have shown that Za ∩B = (0) and A = Za+B, so A ∼= Za⊕B. 2

THEOREM 0.3.12. (Fundamental Theorem of Finite Abelian Groups) Any finite abelian
group is isomorphic to a direct sum of cyclic groups of prime power order. Any two such
decompositions have the same number of factors of each order.

Proof: We first decompose any abelian group A into a direct sum of p-groups, and then we
can use the previous lemma to write each of these groups as a direct sum of cyclic subgroups.

Uniqueness is shown by induction on |A|. It is enough to prove the uniqueness for a
given p-group. Suppose that

Zpα1 ⊕ Zpα2 ⊕ · · · ⊕ Zpαn = Zpβ1 ⊕ Zpβ2 ⊕ · · · ⊕ Zpβm

where α1 ≥ α2 ≥ . . . ≥ αn and β1 ≥ β2 ≥ . . . ≥ βm. Consider the subgroups in which each
element has been multiplied by p. By induction, α1 − 1 = β1 − 1, . . ., which gives α1 = β1,
. . ., with the possible exception of the αi’s and βj ’s that equal 1. But the groups have the
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same order, and this determines that each has the same number of factors isomorphic to Zp.
This completes the proof. 2

EXERCISES

1. If any facts in this section on abelian groups caused you problems, you should review
your elementary group theory.

2. You don’t have to review it now, but make sure you have a reference book that has
some elementary linear algebra.


