
CHAPTER 10

Group Homomorphisms

Definitions and Examples

Definition (Group Homomorphism). A homomorphism from a group G
to a group G is a mapping � : G ! G that preserves the group operation:

�(ab) = �(a)�(b) for all a, b 2 G.

Definition (Kernal of a Homomorphism). The kernel of a homomorphism
� : G ! G is the set Ker� = {x 2 G|�(x) = e}

Example.

(1) Every isomorphism is a homomorphism with Ker� = {e}.

(2) Let G = Z under addition and G = {1,�1} under multiplication. Define
� : G ! G by

�(n) =

(
1, n is even

�1, n is odd

is a homomorphism. For m and n odd:

(even–even)

�(2n + 2m) = �(2(n + m)) = 1 = �(2n)�(2m)

(even–odd)
�(2n + m) = �1 = 1(�1) = �(2n)�(m)

(odd–odd)
�(n + m) = 1 = (�1)(�1) = �(n)�(m)

Ker� = {even integers}.

134
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(3) � : GL(2, R) ! R⇤ (nonzero reals under multiplication) defined by

�(A) = det A is a homomorphism.

�(AB) = det AB = (det A)(det B) = �(A)�(B).

Ker� = SL(2, R).

(4) Let R[x] denote the group of all polynomials with real coe�cients under
addition. Let � : R[x] ! R[x] be defined by �(f) = f 0. The group operation
preservation is simply “the derivative of a sum is the sum of the derivatives.”

�(f + g) = (f + g)0 = f 0 + g0 = �(f) + �(g).

Ker� is the set of all constant polynomials.

(5) The natural homomorphism from Z to Zn is defined by �(m) = m mod n.

Ker� = hni.
(6) Consider � : R ! R under addition defined by �(x) = x2. Since

�(x + y) = (x + y)2 = x2 + 2xy + y2

and
�(x + �(y) = x2 + y2,

this is not a homomorphism.

(7) Every vector space linear transformation is a group homomorphism and the
nullspace is the kernel.
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Properties of Homomorphisms

Theorem (10.1 – Properties of Elements Under Homomorphisms). Let �
be a homomorphism from a group G to a group G and let g 2 G. Then:

(1) �(e) = e.

(2) �(gn) =
⇥
�(g)

⇤n
.

Proof. (For (1) and (2)) Same as in Theorem 6.2. ⇤

(3) If |g| is finite, then |�(g)|
��|g|.

Proof.

Suppose |g| = n =) gn = e. Then

e = �(e) = �(gn) =
⇥
�(g)

⇤n
=) (Corollary 2 to Theorem 4.1)|�(g)|

��n.

⇤

(4) Ker�  G.

Proof.

By (1), Ker� 6= ;. Suppose a, b 2 Ker�. Then

�(ab�1) = �(a)�(b�1) = �(a)
⇥
�(b)

⇤�1
= e · e�1 = e · e = e,

so ab�1 2 Ker�. Thus Ker�  G by the one-step test. ⇤

(5) �(a) = �(b) () a Ker� = b Ker�.

Proof.

�(a) = �(b) ()
e = (�(b))�1�(a) = �(b�1)�(a) = �(b�1a) () b�1a 2 Ker� ()

b Ker� = a Ker� (by property 6 of the lemma in Chapter 7)

⇤
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(6) If �(g) = g0, then ��1(g0) = {x 2 G
���(x) = g0} = g Ker�.

Proof.

[We prove by mutual set inclusion.] Suppose x 2 ��1(g0). Then

�(x) = g0 = �(g) =) x Ker� = g Ker� by property (5)=)
x 2 g Ker� (by property 4 of the lemma in Chapter 7).

Thus ��1(g0) ✓ g Ker�.

Now suppose k 2 Ker�, so that �(gk) = �(g)�(k) = g0e = g0. Thus, by
definition, gk 2 ��1(g0) =) g Ker� ✓ ��1(g0), and so by mutual set inclusion,

g Ker� = ��1(g0). ⇤

Since homomorphisms preserve the group operation, they also preserve many
other group properties.

Theorem (10.2 – Properties of Subgroups Under Homomorphisms).

Let � : G ! G be a homomorphism and let H  G. Then

(1) �(H) = {�(h)|h 2 H}  G.

(2) H cyclic =) �(H) cyclic.

(3) H Abelian =) �(H) Abelian.

Proof. (For (1), (2), and (3)) Same as in Theorem 6.3. ⇤

(4) H C G =) �(H) C �(G).

Proof.

Let �(h) 2 �(H) and �(g) 2 �(G). Then

�(g)�(h)�(g)�1 = �(ghg�1) 2 �(H)

since ghg�1 2 H because H C G. ⇤
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(5) If |Ker�| = n, then � is an n-to-1 mapping from G onto �(G).

Proof. Follows directly from property 6 of Theorem 10.1 and the fact that
all cosets of Ker� = ��1(e). ⇤

(6) If |H| = n, then |�(H)|
��n.

Proof.

Let �H denote the restriction of � to H. Then �H is a homomorphism from H
onto �(H). Suppose |Ker�H| = t. Then, from (5), �H is a t-to-1 mapping, so
|�(H)|t = |H|. ⇤

(7) If K  G, then ��1(K) = {k 2 G|�(k) 2 K}  G.

Proof.

Clearly e 2 ��1(K), so ��1(K) 6= ;. Let k1, k2 2 ��1(K). Then

�(k1),�(k2) 2 K =) �(k2)
�1 2 K.

Thus
�(k1k

�1
2 ) = �(k1)�(k�1

2 ) = �(k1)�(k2)
�1 2 K.

By definition, k1k
�1
2 2 ��1(K) and so ��1(K)  G by the one-step test. ⇤

(8) If K C G, then ��1(K) = {k 2 G|�(k) 2 K} C G.

Proof.

Every element of x��1(K)x�1 has the form xkx�1 where �(k) 2 K. Since
K C G,

�(xkx�1) = �(x)�(k)�(x)�1 2 K,

and so xkx�1 2 ��1(K). Thus x��1(K)x�1 ✓ ��1(K) and ��1(K) C G by
Theorem 9.1. ⇤

(9) If � is onto and Ker� = {e}, then � is an isomorphism from G to G.

Proof. Follows directly from (5). ⇤
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Corollary (To (8)). Ker� C G.

Proof. Let K = {e} in (8). ⇤

Example. Consider � : C? ! C? defined by �(x) = x4. � is a homomor-
phism since

�(xy) = (xy)4 = x4y4 = �(x)�(y).

Ker� = {1,�1, i,�i}. Thus � is a 4-to-1 mapping by property (5) of Theorem
10.2. Since �(31/4) = 3, again by property (5) of Theorem 10.2,

��1(3) = 31/4 Ker� = {31/4,�31/4, 31/4i,�31/4i}
Now let H = hcos 60� + i sin 60�i. Since

(cos 60� + i sin 60�)6 = cos 360� + i sin 360� = 1,

|H| = 6.

�(H) = h(cos 60� + i sin 60�)4i = hcos 240� + i sin 240�i =) |�(H)| = 3,

so |�(H)|
��|H|.
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Example. Define � : Z16 ! Z16 by �(x) = 4x. � is a homomorphism
since, for x, y 2 Z16,

�(x + y) = 4(x + y) = 4x + 4y = �(x) + �(y).

Ker� = {0, 4, 8, 12}. Thus � is 4-to-1. Since �(3) = 12, by property (5) of
Theorem 10.2,

��1(12) = 3 + Ker� = {3, 7, 11, 15}.
Since h3i is cyclic, so is �(h3i).

h3i = {3, 6, 9, 12, 15, 2, 5, 8, 11, 14, 1, 4, 7, 10, 13, 0}.
�(h3i) = {12, 8, 4, 0} = h4i = h12i.

Also, |�(3)| = 4 and |3| = 16, so |�(3)|
��|3|.

With K = {0, 4, 8, 12}  Z16, ��1(K) = h3i  Z16.

Problem (Page 221 # 25). Hom many homomorphisms are there from Z20

onto Z10? How many are there to Z10?

Solution.

Z20 and Z10 are both cyclic and additive. By property (2) of Theorem 10.1,
written additively, �(ng) = n�(g). Such homomorphisms are completely deter-
mined by �(1), i.e., if �(1) = a, �(x) = �(x · 1) = x�(1) = xa. By Lagrange,
|a|

��10, and by property (3) of Theorem 10.1, |a|
��|1| or |a|

��20.

Thus |a| = 1, 5, 10, or 2.

|a| = 10 : 1, 3, 7, 9 have order 10 in Z10, so 4 homomorphisms are onto.

|a| = 5 : 2, 4, 6, 8.

|a| = 2 : 5.

|a| = 1 : 0.

In all cases,

�(x + y) = (x + y)a = xa + ya = �(x + �(y).

⇤
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The First Isomorphism Theorem

Theorem (10.3 — First Isomorphism Theorem). Let � : G ! G be a
group homomorphism. Then  : G/ Ker�! �(G) defined by  (g Ker�) =
�(g) is an isomorphism, i.e., G Ker� ⇡ �(G).

Proof.

That  is well-defined, i.e., the correspondence is independent of the particular
coset representation chosen, and is 1–1 follows directly from property (5) of
Theorem 10.1.  is clearly onto.

[To show  is operation-preserving.] For all x Ker�, y Ker� 2 G/ Ker�,

 (x Ker� y Ker�) =  (xy Ker�) = �(xy) =

�(x)�(y) =  (x Ker�) (y Ker�),

so  is operation-preserving and this is an isomorphism. ⇤

Corollary. If � is a homomorphism from a finite group G to G, then
|�(G)| divides both |G| and |G|.

Example. The natural homomorphism from Z to Zn is defined by �(m) =
m mod n has Ker� = hni. Thus, by the first isomorphism theorem,

Z/hni ⇡ Zn.

Theorem (10.4 — Normal Subgroups are Kernels). Every normal sub-
group of a group G is the kernel of a homomorphism of G.In particular, a
normal subgroup N is a kernel of the mapping g ! gN from G to G/N .

Proof.

Define  : G ! G/N by  (g) = gN (the natural homomorphism from G to
G/N). Then  (xy) = (xy)N = xNyN =  (x) (y). Moreover,

g 2 Ker () gN =  (g) = N () g 2 N

by property (2) of the lemma in Chapter 7. ⇤
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Example. Consider G = G = A4 as given by the Cayley table below,
where i represents the permutation ↵i (from page 111):

Define � : A4 ! A4 by {1, 2, 3, 4} ! 1, {5, 6, 7, 8} ! 5, {9, 10, 11, 12} ! 9.
Then Ker� = {1, 2, 3, 4}. Then  : A4/ Ker� ! �(A4) = {1, 5, 9} is an
isomorphism by Theorem 10.3.

The following table shows A4/ Ker� where H = Ker�:
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Note.

Consider the natural mapping � : G ! G/ Ker� given by  (g) = g Ker�.
Then the proof of Theorem 10.3 shows � =  �. The diagram below illustrating
this is called a commutative diagram:

All homomorphic images of G can be determined (up to isomorphism) by using
G. These must be expressible in the form G/K where K C G since there is a
1–1 correspondence between homomorphic images of G and normal subgroups
of G (given by  in the commutative diagram — each K C G can be a kernel
for a �).

To find all homomorphic images of G, find all normal subgroups K of G, and
construct G/K. Wikth �K : G ! G/K the natural map and  K : G/K ! G
as in Theorem 10.3, �K =  K�K .

Also, since a factor group of an Abelian group is Abelian, so is its homomorphic
image.

If G is cyclic of order n, the number of factor groups and thus homomorphic
images of G is the number of divisors of n, since there is exactly one subgroup
of G (and therefore one factor group of G) for each divisor of n. But keep in
mind that there may be more than one homomorphism to a given homomorphic
image.


