Group Homomorphisms

Definitions and Examples
Definition (Group Homomorphism). A homomorphism from a group G to a group \bar{G} is a mapping $\phi: G \rightarrow \bar{G}$ that preserves the group operation:

$$
\phi(a b)=\phi(a) \phi(b) \text { for all } a, b \in G .
$$

Definition (Kernal of a Homomorphism). The kernel of a homomorphism $\phi: G \rightarrow \bar{G}$ is the set $\operatorname{Ker} \phi=\{x \in G \mid \phi(x)=e\}$

Example.
(1) Every isomorphism is a homomorphism with $\operatorname{Ker} \phi=\{e\}$.
(2) Let $G=\mathbb{Z}$ under addition and $\bar{G}=\{1,-1\}$ under multiplication. Define $\phi: G \rightarrow \bar{G}$ by

$$
\phi(n)= \begin{cases}1, & n \text { is even } \\ -1, & n \text { is odd }\end{cases}
$$

is a homomorphism. For m and n odd:
(even-even)

$$
\phi(2 n+2 m)=\phi(2(n+m))=1=\phi(2 n) \phi(2 m)
$$

(even-odd)

$$
\phi(2 n+m)=-1=1(-1)=\phi(2 n) \phi(m)
$$

(odd-odd)

$$
\phi(n+m)=1=(-1)(-1)=\phi(n) \phi(m)
$$

Ker $\phi=\{$ even integers $\}$.
(3) $\phi: \mathrm{GL}(2, \mathbb{R}) \rightarrow \mathbb{R}^{*}$ (nonzero reals under multiplication) defined by $\phi(A)=\operatorname{det} A$ is a homomorphism.

$$
\phi(A B)=\operatorname{det} A B=(\operatorname{det} A)(\operatorname{det} B)=\phi(A) \phi(B)
$$

$\operatorname{Ker} \phi=\operatorname{SL}(2, \mathbb{R})$.
(4) Let $\mathbb{R}[x]$ denote the group of all polynomials with real coefficients under addition. Let $\phi: \mathbb{R}[x] \rightarrow \mathbb{R}[x]$ be defined by $\phi(f)=f^{\prime}$. The group operation preservation is simply "the derivative of a sum is the sum of the derivatives."

$$
\phi(f+g)=(f+g)^{\prime}=f^{\prime}+g^{\prime}=\phi(f)+\phi(g) .
$$

Ker ϕ is the set of all constant polynomials.
(5) The natural homomorphism from \mathbb{Z} to \mathbb{Z}_{n} is defined by $\phi(m)=m \bmod n$. $\operatorname{Ker} \phi=\langle n\rangle$.
(6) Consider $\phi: \mathbb{R} \rightarrow \mathbb{R}$ under addition defined by $\phi(x)=x^{2}$. Since

$$
\phi(x+y)=(x+y)^{2}=x^{2}+2 x y+y^{2}
$$

and

$$
\phi\left(x+\phi(y)=x^{2}+y^{2},\right.
$$

this is not a homomorphism.
(7) Every vector space linear transformation is a group homomorphism and the nullspace is the kernel.

Properties of Homomorphisms
Theorem (10.1 - Properties of Elements Under Homomorphisms). Let ϕ be a homomorphism from a group G to a group \bar{G} and let $g \in G$. Then: (1) $\phi(e)=\bar{e}$.
(2) $\phi\left(g^{n}\right)=[\phi(g)]^{n}$.

Proof. (For (1) and (2)) Same as in Theorem 6.2.
(3) If $|g|$ is finite, then $|\phi(g)|||g|$.

Proof.

Suppose $|g|=n \Longrightarrow g^{n}=e$. Then
$\bar{e}=\phi(e)=\phi\left(g^{n}\right)=[\phi(g)]^{n} \Longrightarrow($ Corollary 2 to Theorem 4.1) $\mid \phi(g) \| n$.
(4) $\operatorname{Ker} \phi \leq G$.

Proof.

By (1), $\operatorname{Ker} \phi \neq \emptyset$. Suppose $a, b \in \operatorname{Ker} \phi$. Then

$$
\phi\left(a b^{-1}\right)=\phi(a) \phi\left(b^{-1}\right)=\phi(a)[\phi(b)]^{-1}=\bar{e} \cdot \bar{e}^{-1}=\bar{e} \cdot \bar{e}=\bar{e},
$$

so $a b^{-1} \in \operatorname{Ker} \phi$. Thus $\operatorname{Ker} \phi \leq G$ by the one-step test.
(5) $\phi(a)=\phi(b) \Longleftrightarrow a \operatorname{Ker} \phi=b \operatorname{Ker} \phi$.

Proof.

$$
\begin{aligned}
& \phi(a)=\phi(b) \\
& \bar{e}=(\phi(b))^{-1} \phi(a)=\phi\left(b^{-1}\right) \phi(a)=\phi\left(b^{-1} a\right) \Longleftrightarrow b^{-1} a \in \operatorname{Ker} \phi \Longleftrightarrow \\
&\quad b \operatorname{Ker} \phi=a \operatorname{Ker} \phi \text { (by property } 6 \text { of the lemma in Chapter } 7)
\end{aligned}
$$

(6) If $\phi(g)=g^{\prime}$, then $\phi^{-1}\left(g^{\prime}\right)=\left\{x \in G \mid \phi(x)=g^{\prime}\right\}=g$ Ker ϕ.

Proof.

[We prove by mutual set inclusion.] Suppose $x \in \phi^{-1}\left(g^{\prime}\right)$. Then
$\phi(x)=g^{\prime}=\phi(g) \Longrightarrow x \operatorname{Ker} \phi=g \operatorname{Ker} \phi$ by property $(5) \Longrightarrow$
$x \in g \operatorname{Ker} \phi$ (by property 4 of the lemma in Chapter 7).
Thus $\phi^{-1}\left(g^{\prime}\right) \subseteq g \operatorname{Ker} \phi$.
Now suppose $k \in \operatorname{Ker} \phi$, so that $\phi(g k)=\phi(g) \phi(k)=g^{\prime} \bar{e}=g^{\prime}$. Thus, by definition, $g k \in \phi^{-1}\left(g^{\prime}\right) \Longrightarrow g \operatorname{Ker} \phi \subseteq \phi^{-1}\left(g^{\prime}\right)$, and so by mutual set inclusion, $g \operatorname{Ker} \phi=\phi^{-1}\left(g^{\prime}\right)$.

Since homomorphisms preserve the group operation, they also preserve many other group properties.

Theorem (10.2 - Properties of Subgroups Under Homomorphisms).
Let $\phi: G \rightarrow \bar{G}$ be a homomorphism and let $H \leq G$. Then
(1) $\phi(H)=\{\phi(h) \mid h \in H\} \leq \bar{G}$.
(2) H cyclic $\Longrightarrow \phi(H)$ cyclic.
(3) H Abelian $\Longrightarrow \phi(H)$ Abelian.

Proof. (For (1), (2), and (3)) Same as in Theorem 6.3.
(4) $H \triangleleft G \Longrightarrow \phi(H) \triangleleft \phi(G)$.

Proof.

Let $\phi(h) \in \phi(H)$ and $\phi(g) \in \phi(G)$. Then

$$
\phi(g) \phi(h) \phi(g)^{-1}=\phi\left(g h g^{-1}\right) \in \phi(H)
$$

since $g h g^{-1} \in H$ because $H \triangleleft G$.
(5) If $|\operatorname{Ker} \phi|=n$, then ϕ is an n-to- 1 mapping from G onto $\phi(G)$.

Proof. Follows directly from property 6 of Theorem 10.1 and the fact that all cosets of $\operatorname{Ker} \phi=\phi^{-1}(e)$.
(6) If $|H|=n$, then $\mid \phi(H) \| n$.

Proof.

Let ϕ_{H} denote the restriction of ϕ to H. Then ϕ_{H} is a homomorphism from H onto $\phi(H)$. Suppose $\left|\operatorname{Ker} \phi_{H}\right|=t$. Then, from (5), ϕ_{H} is a t-to-1 mapping, so $|\phi(H)| t=|H|$.
(7) If $\bar{K} \leq \bar{G}$, then $\phi^{-1}(\bar{K})=\{k \in G \mid \phi(k) \in \bar{K}\} \leq G$.

Proof.
Clearly $e \in \phi^{-1}(\bar{K})$, so $\phi^{-1}(\bar{K}) \neq \emptyset$. Let $k_{1}, k_{2} \in \phi^{-1}(\bar{K})$. Then

$$
\phi\left(k_{1}\right), \phi\left(k_{2}\right) \in \bar{K} \Longrightarrow \phi\left(k_{2}\right)^{-1} \in \bar{K} .
$$

Thus

$$
\phi\left(k_{1} k_{2}^{-1}\right)=\phi\left(k_{1}\right) \phi\left(k_{2}^{-1}\right)=\phi\left(k_{1}\right) \phi\left(k_{2}\right)^{-1} \in \bar{K} .
$$

By definition, $k_{1} k_{2}^{-1} \in \phi^{-1}(\bar{K})$ and so $\phi^{-1}(\bar{K}) \leq G$ by the one-step test. (8) If $\bar{K} \triangleleft \bar{G}$, then $\phi^{-1}(\bar{K})=\{k \in G \mid \phi(k) \in \bar{K}\} \triangleleft G$.

Proof.

Every element of $x \phi^{-1}(\bar{K}) x^{-1}$ has the form $x k x^{-1}$ where $\phi(k) \in \bar{K}$. Since $\bar{K} \triangleleft \bar{G}$,

$$
\phi\left(x k x^{-1}\right)=\phi(x) \phi(k) \phi(x)^{-1} \in \bar{K},
$$

and so $x k x^{-1} \in \phi^{-1}(\bar{K})$. Thus $x \phi^{-1}(\bar{K}) x^{-1} \subseteq \phi^{-1}(\bar{K})$ and $\phi^{-1}(\bar{K}) \triangleleft G$ by Theorem 9.1.
(9) If ϕ is onto and $\operatorname{Ker} \phi=\{e\}$, then ϕ is an isomorphism from G to \bar{G}.

Proof. Follows directly from (5).

Corollary (To (8)). $\operatorname{Ker} \phi \triangleleft G$.
Proof. Let $\bar{K}=\{e\}$ in (8).

Example. Consider $\phi: \mathbb{C}^{\star} \rightarrow \mathbb{C}^{\star}$ defined by $\phi(x)=x^{4} . \phi$ is a homomorphism since

$$
\phi(x y)=(x y)^{4}=x^{4} y^{4}=\phi(x) \phi(y) .
$$

$\operatorname{Ker} \phi=\{1,-1, i,-i\}$. Thus ϕ is a 4 -to- 1 mapping by property (5) of Theorem 10.2 . Since $\phi\left(3^{1 / 4}\right)=3$, again by property (5) of Theorem 10.2 ,

$$
\phi^{-1}(3)=3^{1 / 4} \operatorname{Ker} \phi=\left\{3^{1 / 4},-3^{1 / 4}, 3^{1 / 4} i,-3^{1 / 4} i\right\}
$$

Now let $H=\left\langle\cos 60^{\circ}+i \sin 60^{\circ}\right\rangle$. Since

$$
\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)^{6}=\cos 360^{\circ}+i \sin 360^{\circ}=1
$$

$|H|=6$.

$$
\phi(H)=\left\langle\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)^{4}\right\rangle=\left\langle\cos 240^{\circ}+i \sin 240^{\circ}\right\rangle \Longrightarrow|\phi(H)|=3,
$$

so $|\phi(H)|||H|$.

Example. Define $\phi: \mathbb{Z}_{16} \rightarrow \mathbb{Z}_{16}$ by $\phi(x)=4 x$. ϕ is a homomorphism since, for $x, y \in \mathbb{Z}_{16}$,

$$
\phi(x+y)=4(x+y)=4 x+4 y=\phi(x)+\phi(y) .
$$

$\operatorname{Ker} \phi=\{0,4,8,12\}$. Thus ϕ is 4 -to- 1 . Since $\phi(3)=12$, by property (5) of Theorem 10.2,

$$
\phi^{-1}(12)=3+\operatorname{Ker} \phi=\{3,7,11,15\} .
$$

Since $\langle 3\rangle$ is cyclic, so is $\phi(\langle 3\rangle)$.

$$
\begin{aligned}
&\langle 3\rangle=\{3,6,9,12,15,2,5,8,11,14,1,4,7,10,13,0\} . \\
& \phi(\langle 3\rangle)=\{12,8,4,0\}=\langle 4\rangle=\langle 12\rangle .
\end{aligned}
$$

Also, $|\phi(3)|=4$ and $|3|=16$, so $|\phi(3)|||3|$.
With $\bar{K}=\{0,4,8,12\} \leq \mathbb{Z}_{16}, \phi^{-1}(\bar{K})=\langle 3\rangle \leq \mathbb{Z}_{16}$.
Problem (Page $221 \# 25$). Hom many homomorphisms are there from \mathbb{Z}_{20} onto \mathbb{Z}_{10} ? How many are there to \mathbb{Z}_{10} ?

Solution.

\mathbb{Z}_{20} and \mathbb{Z}_{10} are both cyclic and additive. By property (2) of Theorem 10.1, written additively, $\phi(n g)=n \phi(g)$. Such homomorphisms are completely determined by $\phi(1)$, i.e., if $\phi(1)=a, \phi(x)=\phi(x \cdot 1)=x \phi(1)=x a$. By Lagrange, $|a| \mid 10$, and by property (3) of Theorem 10.1, $|a|||1|$ or $| a|\mid 20$.
Thus $|a|=1,5,10$, or 2 .
$|a|=10: 1,3,7,9$ have order 10 in \mathbb{Z}_{10}, so 4 homomorphisms are onto.
$|a|=5: 2,4,6,8$.
$|a|=2: 5$.
$|a|=1: 0$.
In all cases,

$$
\phi(x+y)=(x+y) a=x a+y a=\phi(x+\phi(y) .
$$

The First Isomorphism Theorem
Theorem (10.3 - First Isomorphism Theorem). Let $\phi: G \rightarrow \bar{G}$ be a group homomorphism. Then $\psi: G / \operatorname{Ker} \phi \rightarrow \phi(G)$ defined by $\psi(g \operatorname{Ker} \phi)=$ $\phi(g)$ is an isomorphism, i.e., $G \operatorname{Ker} \phi \approx \phi(G)$.

Proof.

That ψ is well-defined, i.e., the correspondence is independent of the particular coset representation chosen, and is 1-1 follows directly from property (5) of Theorem 10.1. ψ is clearly onto.
[To show ψ is operation-preserving.] For all $x \operatorname{Ker} \phi, y \operatorname{Ker} \phi \in G / \operatorname{Ker} \phi$,

$$
\begin{aligned}
& \psi(x \operatorname{Ker} \phi y \operatorname{Ker} \phi)=\psi(x y \operatorname{Ker} \phi)=\phi(x y)= \\
& \quad \phi(x) \phi(y)=\psi(x \operatorname{Ker} \phi) \psi(y \operatorname{Ker} \phi),
\end{aligned}
$$

so ψ is operation-preserving and this is an isomorphism.
Corollary. If ϕ is a homomorphism from a finite group G to \bar{G}, then $|\phi(G)|$ divides both $|G|$ and $|\bar{G}|$.

Example. The natural homomorphism from \mathbb{Z} to \mathbb{Z}_{n} is defined by $\phi(m)=$ $m \bmod n$ has $\operatorname{Ker} \phi=\langle n\rangle$. Thus, by the first isomorphism theorem,

$$
\mathbb{Z} /\langle n\rangle \approx \mathbb{Z}_{n}
$$

Theorem (10.4 - Normal Subgroups are Kernels). Every normal subgroup of a group G is the kernel of a homomorphism of G.In particular, a normal subgroup N is a kernel of the mapping $g \rightarrow g N$ from G to G / N.

Proof.

Define $\psi: G \rightarrow G / N$ by $\psi(g)=g N$ (the natural homomorphism from G to $G / N)$. Then $\psi(x y)=(x y) N=x N y N=\psi(x) \psi(y)$. Moreover,

$$
g \in \operatorname{Ker} \psi \Longleftrightarrow g N=\psi(g)=N \Longleftrightarrow g \in N
$$

by property (2) of the lemma in Chapter 7.

Example. Consider $G=\bar{G}=A_{4}$ as given by the Cayley table below, where i represents the permutation α_{i} (from page 111):

	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	1	4	3	6	5	8	7	10	9	12	11
3	3	4	1	2	7	8	5	6	11	12	9	10
4	4	3	2	1	8	7	6	5	12	11	10	9
5	5	8	6	7	9	12	10	11	1	4	2	3
6	6	7	5	8	10	11	9	12	2	3	1	4
7	7	6	8	5	11	10	12	9	3	2	4	1
8	8	5	7	6	12	9	11	10	4	1	3	2
9	9	11	12	10	1	3	4	2	5	7	8	6
10	10	12	11	9	2	4	3	1	6	8	7	5
11	11	9	10	12	3	1	2	4	7	5	6	8
12	12	10	9	11	4	2	1	3	8	6	5	7

Define $\phi: A_{4} \rightarrow A_{4}$ by $\{1,2,3,4\} \rightarrow 1,\{5,6,7,8\} \rightarrow 5,\{9,10,11,12\} \rightarrow 9$. Then $\operatorname{Ker} \phi=\{1,2,3,4\}$. Then $\psi: A_{4} / \operatorname{Ker} \phi \rightarrow \phi\left(A_{4}\right)=\{1,5,9\}$ is an isomorphism by Theorem 10.3.
The following table shows $A_{4} / \operatorname{Ker} \phi$ where $H=\operatorname{Ker} \phi$:

	$1 H$	$5 H$	$9 H$
$1 H$	$1 H$	$5 H$	$9 H$
$5 H$	$5 H$	$9 H$	$1 H$
$9 H$	$9 H$	$1 H$	$5 H$

Note.
Consider the natural mapping $\gamma: G \rightarrow G / \operatorname{Ker} \phi$ given by $\psi(g)=g \operatorname{Ker} \phi$. Then the proof of Theorem 10.3 shows $\phi=\psi \gamma$. The diagram below illustrating this is called a commutative diagram:

All homomorphic images of G can be determined (up to isomorphism) by using G. These must be expressible in the form G / K where $K \triangleleft G$ since there is a 1-1 correspondence between homomorphic images of G and normal subgroups of G (given by ψ in the commutative diagram - each $K \triangleleft G$ can be a kernel for a ϕ).
To find all homomorphic images of G, find all normal subgroups K of G, and construct G / K. Wikth $\gamma_{K}: G \rightarrow G / K$ the natural map and $\psi_{K}: G / K \rightarrow \bar{G}$ as in Theorem 10.3, $\phi_{K}=\psi_{K} \gamma_{K}$.
Also, since a factor group of an Abelian group is Abelian, so is its homomorphic image.
If G is cyclic of order n, the number of factor groups and thus homomorphic images of G is the number of divisors of n, since there is exactly one subgroup of G (and therefore one factor group of G) for each divisor of n. But keep in mind that there may be more than one homomorphism to a given homomorphic image.

