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GROUP PROPERTIES AND GROUP ISOMORPHISM 

I n t r o d u c t i o n  
 

T H E   I M P O R T A N C E   O F   G R O U P   T H E O R Y is relevant to every branch 
of Mathematics where symmetry is studied.  Every symmetrical object is associated with a 
group.  It is in this association why groups arise in many different areas like in Quantum 
Mechanics, in Crystallography, in Biology, and even in Computer Science.  There is no 
such easy definition of symmetry among mathematical objects without leading its way to 
the theory of groups. 

 
 
 
In this paper we present the first stages of constructing a systematic method for 

classifying groups of small orders.  Classifying groups usually arise when trying to 
distinguish the number of non-isomorphic groups of order n.  This paper arose 
from an attempt to find a formula or an algorithm for classifying groups given 
invariants that can be readily determined without any other known assumptions 
about the group.  This formula is very useful if we want to know if two groups are 
isomorphic.  Mathematical objects are considered to be essentially the same, from 
the point of view of their algebraic properties, when they are isomorphic.  When 
two groups Γ and Γ’ have exactly the same group-theoretic structure then we say 
that Γ is isomorphic to Γ’ or vice versa.  Formally, the map ϕ : Γ → Γ’ is called an 
isomorphism and Γ and Γ’ are said to be isomorphic if 

i. ϕ is a homomorphism ( i.e., ϕ(xy) = ϕ(x)ϕ(y) ), and 
ii. ϕ is a bijection.   

 For two groups of order n, there are n! 1-1 onto mappings from Γ to Γ’.  To 
check if ϕ is an isomorphism we need to check ϕ(ab) = ϕ(a)ϕ(b) for all a, b.  This 
implies that there are n! * n2 combinations to check.  However, for groups of order 
32, 32! = 263130836933693530167218012160000000.  This implies that even 
though the problem of telling whether two groups are isomorphic is solvable, 
checking all the possible combinations is not an efficient way to solve it.  It is 
therefore necessary to design an algorithm that will minimize computation time in 
determining if two groups are isomorphic.   

 Groups posses various properties or features that are preserved in 
isomorphism.  An isomorphism preserves properties like the order of the group, 
whether the group is abelian or non-abelian, the number of elements of each order, 
etc.  Two groups which differ in any of these properties are not isomorphic.  We 
are primarily interested in invariants that can be easily computed and therefore be 
tested first when determining whether two groups are isomorphic.    

 M. Hall Jr. and J. Senior [7] used invariants such as the number of elements of 
each order k (k small) to determine whether two groups of order 2n  (n≤6) are 
isomorphic.  Philip Hall [8], in his article The classification of prime-power 
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groups , developed a systematic classification theory for groups of prime-power 
order.  He agreed that the most important number associated with the group after 
the order, is the class of the group.  In the book Abstract Algebra 2nd Edition (page 
167), the authors [9] discussed how to find all the abelian groups of order n using 
the Fundamental Theorem of Finite Abelian Groups.  However, mentioned that 
the amount of information necessary to determine to which isomorphism types of 
groups of order n a particular group belongs to may need considerable amount of 
information.    

 The intention of this project is to discover enough properties of groups (atleast 
of order 1-32) that will tell us whether two groups are isomorphic.  In particular 
we want those properties that can be easily computed and which can be used to 
distinguish groups.  So far we have accomplished this purpose for abelian groups.  
We will show in this paper that for abelian groups of any order, as large as 
possible, we can determine to what isomorphism type it belong to.  We will show 
in this paper how the structure of an abelian group can be determined from the 
number of elements of various orders.  This result however does not hold in 
general: the number of elements of each order is not enough to classify groups.  
That is, there exists two NON-isomorphic NON-abelian groups with the same 
number of elements of each order.   This implies that the number of elements of 
each order is not enough to determine the structure of non-abelian groups.  Thus, 
for the non-abelian case we need to look at more invariants.  We will therefore 
treat the non-abelian groups a separate case.  The object of my next paper will be 
to look at non-abelian groups and find properties (besides orders of elements) that 
are preserved under isomorphism and hope to find easily calculated properties that 
can be used to distinguish these groups (at least for orders less than or equal to 32). 

 The Groups32 package will be used to compute various properties of groups, 
such as the order of each elements of the group, the number of subgroups, etc.  
The Groups32 package is a complete set of groups, one for each isomorphism 
class, for order 1-32.  Any group of order 1-32 must be isomorphic to one of the 
groups in Groups32.  Groups32 has built in tables for the groups of orders 1-32.  
When a command is issued, the information generated is computed from the 
tables.  Groups32 is extensible.  We can add new commands to the system.  This 
package is a very important tool in investigating invariants of groups that can 
sometimes be very laborious when computed by hand.   
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Preliminaries:    The reader who is familiar with terms and definitions in group theory 
may skip this section.  
 

Definitions:   
 
1.  Group.  A group is a nonempty set Γ with a defined binary operation ( � ) that 

satisfy the following conditions:  
i.   Closure: For all a, b, ∈ Γ the element a � b is a uniquely defined 

element of Γ. 
ii.  Associativity: For all a, b, c ∈ Γ, we have a � ( b � c ) = ( a � b ) � c.  
iii. Identity: There exists an identity element 1 ∈ Γ such that 1 � a = a  and 

a � 1 = a for all a ∈ Γ. 
iv. Inverses:  For each a ∈ Γ there exist an inverse element a-1 such that  
      a � a- 1 = 1  and a-1 � a = 1.  

2.  Homomorphism.  Let (Γ, �) and (Γ�,*) be groups.  A map ϕ : Γ → Γ� such that ϕ(x 
� y) = ϕ(x)* ϕ(y), for all x,y ∈ Γ is called a homomorphism. 

3.  Isomorphism.  The map ϕ : Γ → Γ� is called an isomorphism and Γ and Γ� are 
said to be isomorphic if 

3.1  ϕ is a homomorphism. 
3.2  ϕ is a bijection. 

4. Order. (of the group).  The number of distinct elements in a group Γ is called 
the order of the group.  

5. Order. (of an element). If Γ is a group and a ∈ Γ, the order of a is the least 
positive integer m such that am = 1.  If no such integer m exists we say that x 
is of infinite order.   

6. Direct Products.  The direct product Γ1 x Γ2 x � x Γn of the groups 
Γ1 , Γ2,  � ,  Γn  is the set of n-tuples (g1, g2, �, gn) where gi ∈ ΓI, with 
operation defined componentwise: 

(g1, g2, �, gn) � (h1, h2, �, hn) = (g1○h1, g2○h2, �, gn ○hn),  
  where ○ is the binary operation in Γi.  In particular, if Γ ≅ Γ1 x Γ2, then 

Γ1 ∩ Γ2 = {1} and Γ1 Γ2 = Γ. 
 
7. Cyclic.  A group Γ is cyclic if  Γ can be generated by a single element, i.e., 

there is some element x ∈ Γ such that Γ = {xn | n ∈ ∧} (here the operation is 
multiplication).  In additive notation Γ = {nx | n ∈ ∧}. 

8. Type.  If a finite group Γ is the direct product of cyclic groups of orders     
, where ,�,  are primes, ≤ ≤ � ≤ , ,� , r  

positive integers, then the ordered k-tuple ( )is called the type of 
Γ. 

kr
k

rr ppp ,..,, 21
21 1p kp 1p

rp, 2
2

2p
p,..,

kp 1r k
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k

rp 1
1

 
Notations: 

 
1.   Γ ≅ Γ’ denotes Γ is isomorphic to Γ� 
2. | Γ | denotes the order of the group Γ.  
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3. | a | denotes the order of the element a. 
4. 1 denotes the identity element of Γ, 1’ denotes the identity element of Γ�. 
5. SOLS(k, Γ) = gives the number of elements ∈ Γ that satisfy the equation 

xk = 1. 
6. Ords(k, Γ) = number of elements of order k ∈ Γ. 
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Groups may be presented to us in several different ways.  A group can be 
described by its multiplication table, by its generators and relations, by a 
Cayley graph, as a group of transformations (usually of a geometric object), as 
a subgroup of a permutation group, or as a subgroup of a matrix group to 
name a few.  This project started when I was asked by my mentor to look at 
tables for groups of orders 1-16 published on the internet by Kenneth 
Almquist and find out the duplicates.  The group tables seem to be generated 
by a computer algorithm which fails to check some tables that look different 
but are isomorphic.  Here is an example of three group tables in the Almquist 
file.  Two of these represent the same group (up to isomorphism) and one of 
them is different.   

 
 

   
 _A_B_C_D_E_F_G_H_I_J_K_L_ 
A|A B C D E F G H I J K L 
B|B C D E F A L G H I J K 
C|C D E F A B K L G H I J 
D|D E F A B C J K L G H I 
E|E F A B C D I J K L G H 
F|F A B C D E H I J K L G 
G|G H I J K L A B C D E F 
H|H I J K L G F A B C D E 
I|I J K L G H E F A B C D 
J|J K L G H I D E F A B C 
K|K L G H I J C D E F A B 
L|L G H I J K B C D E F A 
 
  

  
 _A_B_C_D_E_F_G_H_I_J_K_L_ 
A|A B C D E F G H I J K L 
B|B C A G H I J K L D E F 
C|C A B J K L D E F G H I 
D|D E F A B C L J K H I G 
E|E F D L J K H I G A B C 
F|F D E H I G A B C L J K 
G|G H I B C A F D E K L J 
H|H I G F D E K L J B C A 
I|I G H K L J B C A F D E 
J|J K L C A B I G H E F D 
K|K L J I G H E F D C A B 
L|L J K E F D C A B I G H 
 
               

  
 _A_B_C_D_E_F_G_H_I_J_K_L_ 
A|A B C D E F G H I J K L 
B|B C A L J E K G D F H I 
C|C A B I F J H K L E G D 
D|D E G J K I L F H A B C 
E|E G D C A K B L J I F H 
F|F H I B C G A D E L J K 
G|G D E H I A F B C K L J 
H|H I F K L C J A B G D E 
I|I F H E G L D J K C A B 
J|J K L A B H C I F D E G 
K|K L J G D B E C A H I F 
L|L J K F H D I E  G  B C A 

 
 

As mentioned above this is not the only one way of describing groups.  
The isomorphism problem becomes even more complicated if we need to tell 
whether two groups presented in other ways are isomorphic: Is the group 
given by generators x,y,z with xy = z, yz = x, zx = y isomorphic to the group 
with generators x,y so that xxxx = yyyy = 1, xx = yy, yxy = x?  Is the group 
generated by permutations (1 2), (1 2 3) isomorphic to the group with 
generators x,y  so that xxx = yy = xyxy = 1?  The task of determining if two 
groups are the same (up to isomorphism) is not trivial.   

Suppose we are asked:  Is S3 isomorphic to C4?  The answer is no.  C4 is of 
order 4 and S3 is of order 6.  Here we are using the theorem  

 
Theorem 1:  If two groups are isomorphic, they must have the same order. 
 

Proof:  By definition, two groups are isomorphic if there exist a 1-1 onto mapping ϕ from 
one group to the other.  In order for us to have 1-1 onto mapping we need that the number 
of elements in one group equal to the number of the elements of the other group. Thus, 
the two groups must have the same order. 
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 Below is a sample run of Groups32 program which shows the orders of 
the elements for the group S3 (group #8) and C4 (group #4).  The Groups32 
package can be accessed at http://www.math.ucsd.edu/~jwavrik.  The ORDERS 
command tells us the number of elements of each orders of the group.  We 
note that the particular group number of S3 and C4 in Groups32 was 
determined ahead of time by using the PERMGRPS command.    

 
 

Groups32 

copyright 1990-2001 John J Wavrik        Dept of Math - UCSD 

Ver 6.3.2a  - January 11, 2001 

  CENTER       CENTRALIZER  CHART        CONJ-CLS 

  COSETS       EVALUATE     EXAMPLES     GENERATE 

  GROUP        HELP         INFO         ISOMORPHISM 

  LEFT         NORMALIZER   ORDERS       PERMGRPS 

  POWERS       QUIT         RESULT       RIGHT 

  SEARCH       STOP         SUBGROUPS    TABLE 

  X 

G1>> ORDERS   for Group Number 8 

Group number 8 of Order 6 

    1 elements of order  1:   A 

    3 elements of order  2:   D E F 

    2 elements of order  3:   B C 

    0 elements of order  6: 

 

G8>> ORDERS   for Group Number 4 

Group number 4 of Order 4 

    1 elements of order  1:   A 

    1 elements of order  2:   C 

    2 elements of order  4:   B D 

 
Note:  The underlined part implies input from the user. 
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Below is a list of common names for groups and their number in 
Groups32 which I was able to determine for some of the groups using the 
PERMGRPS command.  

Table 1 

#in 
G32 ORDER Common Name Notes: 
1 1 Identity  
2 2 C2  
3 3 C3  
4 4 C4  
5 4 C2 x C2 Klein Four Group 
6 5 C5  
7 6 C6 ≅ C3 x C2 
8 6 S3  
9 7 C7  
10 8 C8  
11 8 C4 x C2  
12 8 C2 x C2 x C2  
13 8 D4  

14 8 QUATERNION 
Hamiltonian (All subgroups are 
normal but non-abelian) 

15 9 C9  
16 9 C3 x C3  
17 10 C10  
18 10 D5 C2 x C5 
19 11 C11  
20 12 C12  
21 12 C2 x C6 C2 x C2 x C3 
22 12 D6 ≅ D3 x C2 
23 12 A4  
24 12 C3 ∝ C4 ∝ - semidirect product 
25 13 C13  
26 14 C14  
27 14 D7  
28 15 C15 C3 x C5 
29 16 C16  
30 16 C2 x C8  
31 16 C4 x C4  
32 16 C4 x C2 x C2  

33 16 
C2 x C2 x C2 x 
C2  

96 32 C8 x C4 
Elements with O(8) = 16, 
O(4) = 12, O(2) = 3 

129 32 C8 x C2 x C2 
Elements with O(8) = 16, O(4) = 8, 
O(2) = 7 

 - 7 - 



GROUP PROPERTIES AND GROUP ISOMORPHISM 

The common names are not installed in Groups32.  Below is a sample 
session showing how to determine which group in Groups32 is isomorphic to 
C4 x C2 x C2 : 

 
 

G1>> PERMGRPS 
 
  CREATE       ELEMENTS     HELP         INFO 
  INSTALL      MAIN         MULTIPLY     QUIT 
  X 
 
PERM>> CREATE 
Subgroup of Sn -- what is n?  Number 8 
     Put in generators as product of cycles. 
     End with a blank line 
Generator (1 2 3 4) 
Generator (5 6) 
Generator (7 8) 
Generator 
Group is of order 16 
A  ()              B  (7 8 )                  C  (5 6 ) 
D  (5 6 )(7 8 )    E  (1 2 3 4 )              F  (1 2 3 4 )(7 8 ) 
G  (1 2 3 4 )(5 6 )H  (1 2 3 4 )(5 6 )(7 8 )  I (1 3 )(2 4 )          
J  (1 3 )(2 4 )(7 8 )                         K  (1 3 )(2 4 )(5 6 )   
L  (1 3 )( 2 4 )(5 6 )(7 8 ) 
M  (1 4 3 2 )      N  (1 4 3 2 )(7 8 )        O  (1 4 3 2 )(5 6 ) 
P  (1 4 3 2 )(5 6 )(7 8 ) 
 
PERM>> INSTALL 
    Install as table k (1..5)  Number  1 
PERM>> MAIN 

 
  
In the above session we created a subgroup of Sn, where n = 8, generated 

by a given set of permutations (given as product of cycles).  We can install 
this say as group #1.  Installing a group as group #1 then replaces the table for 
group 1 with the new group.  We then type the MAIN command so that we can 
apply all the operations to the newly generated group.  Using Table 1 above, 
let us check if the group #32 is isomorphic to C4 x C2 x C2.   

For simplicity we let Α = the new group #1, and Β = group #32.  Notice 
that group #1 is now a group of order 16 (it used to be the trivial group of 
order 1).  Notice also that both Α and Β are abelian (no asterisk *) as 
expected.  Under isomorphism the abelian property is preserved.   

 
Theorem 2:  Let ϕ :Γ → Γ� be an isomorphism.  If Γ is abelian, then so is Γ�. 
 

Proof:  Assume that Γ is abelian.  Let a2, b2 ∈ Γ�.  Since ϕ is an onto mapping there 
exists a1, b1 ∈ Γ with ϕ(a1) = a2 and ϕ(b1) = b2.  Then  

a2 b2 = ϕ(a1) ϕ(b1) = ϕ(a1 b1) = ϕ(b1 a1) = ϕ(b1) ϕ(a1) = b2 a2. 
Thus Γ� is abelian. 

The first thing we need to check in determining whether two groups are 
isomorphic is the order of the groups.  We have proven a theorem that stated 
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this earlier.  Both Α and Β are of order 16.  We can use the ISOMORPHISM 
command to check that Α ≅ Β.   

 
G1>> CHART   Order of Groups (1-32 or 0) Number 16 
       1   29   30   31   32   33   34*  35*  36*  37*  38* 
 39*  40*  41*  42* 
        There are 15 Groups of order 16 
        6 abelian and 9 non-abelian 
 
G1>> ORDERS   for Group Number 1 
 
Group number 1 of Order 16 
    1 elements of order  1:   A 
    7 elements of order  2:   B C D I J K L 
    8 elements of order  4:   E F G H M N O P 
    0 elements of order  8: 
    0 elements of order 16: 
 
G1>> ORDERS   for Group Number 32 
 
Group number 32 of Order 16 
    1 elements of order  1:   A 
    7 elements of order  2:   C E G I K M O 
    8 elements of order  4:   B D F H J L N P 
    0 elements of order  8: 
    0 elements of order 16: 
 
G32>> ISOMORPHISM   from Group Number 1 to Group Number 32 

 

 
When we use the ISOMORPHISM command, a separate window pops up. 
 
Send: B             To: B 
 
Inconsistent because: 
      Your map sends 
A --> C 
A --> C 
A * A is A in Group 1 
The mapping sends A --> C 
You must redo the last assignment! -- press any key 
 
Let�s try again:   
 
A B C D E F G H I J K L M N O P 
A C E G B D F H I K M O 
 
Send: G             To: F 
Inconsistent because: 
      Your map sends to be mapped 
E --> B 
E --> B 
E * E is I in Group 1 
The mapping sends I --> I 
You must redo the last assignment! -- press any key 
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It is not easy to match the elements of the groups and find an isomorphism  
between them.  For groups of order 16, we need to check 162 * 16! possible 
combinations.  What we have shown above is that mapping the element B of 
Γ to the element B of Γ� will not produce an isomorphism ϕ because in this 
mapping the identity element of Α will get sent to a non-identity element of Β.  
We will prove later that this is always the case:  If ϕ : Γ → Γ� is an 
isomorphism then ϕ(1) = 1�, where 1 is the identity element of Γ and 1� is the 
identity element of Γ�. It is clear that we need to know more about the 
structure of the group to find an efficient way of finding isomorphism between 
them.   

We can use more of the Groups32 commands to minimize the number of 
combinations to check.  We can use the SUBGROUPS command to look at the 
generators of the two groups.  Here we are going to use the theorem  

 
 

Theorem 3:  Let ϕ : Γ → Γ� be an isomorphism..  The generators of Γ are sent to 
generators of Γ�. 
 

Proof:  Let S = {s1,s2,�,sm} be a generating set for Γ.  Let g� ∈ Γ�.  Since ϕ is an 
isomorphism which implies that is ϕ onto, there exists g ∈ Γ such that ϕ(g) = g�.  By 
definition of a generating set, every element in Γ can be written as a product of 
generators, g = x1x2 �xk, where xi ∈ S or xi

-1 ∈ S. (for finite groups we only need to 
consider xi ∈ S).  Thus, 

ϕ(g) = ϕ(x1x2 �xk) = ϕ(x1)ϕ(x2)�ϕ(xk) = g�.   
This  implies   that  any  g� ∈ Γ� can  be written   as a   product g� = y1y2�yj,  where yi  or  
yi 

�1 ∈ T = {ϕ(s1),ϕ(s2),�ϕ(sm)}. (for finite groups we only need to consider yi ∈ T).  By 
definition, this makes T a generating set for Γ�.  Therefore, ϕ(s1),ϕ(s2),�ϕ(sm) are 
generators in Γ�.   

 
Let us take a look at the subgroups of Α and Β.  Below we start by using 

the SUBGROUPS command.  Here we will see sets of generators for Α and Β.  
These sets however are not unique.  Groups32 computes the set of generators 
by first checking if one element generates the whole group.  If any one single 
element does not generate the whole group, Groups 32 then starts to look at a 
pair of elements and then three elements, etc.  The first pair, triplet,�,etc  it 
finds is what is being given as an output.     
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G32>> SUBGROUPS   of Group Number 1 
  ... wait 
 
   * = Normal subgroup 
   Generators            Subgroup 
  0  { }              *{ A } 
  1  { B }          *{ A B } 
  2  { C }          *{ A C } 
  3  { D }          *{ A D } 
  4  { I }           *{ A I } 
  5  { J }           *{ A J } 
  6  { K }          *{ A K } 
  7  { L }          *{ A L } 
  8  { B C }      *{ A B C D } 
  9  { B I }        *{ A B I J } 
 10  { C I }       *{ A C I K } 
 11  { D J }       *{ A D J K } 
 12  { D I }       *{ A D I L } 
 13  { C J }       *{ A C J L } 
 14  { B K }      *{ A B K L } 
 15  { E }          *{ A E I M } 
 16  { F }          *{ A F I N } 
 17  { G }          *{ A G I O } 
 18  { H }          *{ A H I P } 
 19  { B C I }     *{ A B C D I J K L } 
 20  { B E }       *{ A B E F I J M N } 
 21  { C E }       *{ A C E G I K M O } 
 22  { D F }       *{ A D F G I L N O } 
 23  { D E }       *{ A D E H I L M P } 
 24  { C F }       *{ A C F H I K N P } 
 25  { B G }       *{ A B G H I J O P } 
 26  { B C E }    *{ A B C D E F G H I J K L M 
                                       N O P} 

 
 

G1>> SUBGROUPS   of Group Number 32 
  ... wait 
 
   * = Normal subgroup 
   Generators            Subgroup 
  0  { }                 *{ A } 
  1  { C }              *{ A C } 
  2  { E }              *{ A E } 
  3  { G }              *{ A G } 
  4  { I }               *{ A I } 
  5  { K }              *{ A K } 
  6  { M }              *{ A M } 
  7  { O }               *{ A O } 
  8  { B }               *{ A B C D } 
  9  { C E }            *{ A C E G } 
 10  { F }               *{ A C F H } 
 11  { C I }            *{ A C I K } 
 12  { J }                *{ A C J L } 
 13  { E I }             *{ A E I M } 
 14  { G K }           *{ A G K M } 
 15  { G I }             *{ A G I O } 
 16  { E K }            *{ A E K O } 
 17  { C M }           *{ A C M O } 
 18  { N }                *{ A C N P } 
 19  { B E }             *{ A B C D E F G H } 
 20  { B I }              *{ A B C D I J K L } 
 21  { C E I }           *{ A C E G I K M O } 
 22  { F M }             *{ A C F H J L M O } 
 23  { F I }               *{ A C F H I K N P } 
 24  { E J }              *{ A C E G J L N P } 
 25  { B M }            *{ A B C D M N O P } 
 26  { B E I }           *{ A B C D E F G H I J K L M 
                                     N O P} 

 

 
Now we issue the isomorphism command, this time we want to make sure 

that generators of Α get sent to generators of Β.  Here we have found an 
isomorphism from Α to Β.   

 
G32>> ISOMORPHISM   from Group Number 1 to Group Number 32 
 
G32>> RESULT 
 
        A B C D E F G H I J K L M N O P 
        A E I M B F J N C G K O D H L P 

         

 
 
This means we send A ∈ Α to A ∈ Β (A is the identity element in 

Groups32), B ∈ Α to E ∈ Β, C → I, E → B, etc. 

But we note that generators and relations of the groups may not always be 
presented to us.  We may be presented only by the number of elements of each 
order and nothing else.  Given only the number of elements of each orders can 
we identify the structure of the group?  
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Note:  On the first isomorphism popup window, we tried sending B → B.  
Notice that B ∈ Α is of order 2 and B ∈ Β is of order 4, and this mapping did 
not give us an isomorphism.  We will discuss below why this is the case.  To 
illustrate why this is not a valid mapping that will produce an isomorphism we 
will look at the following problem. 

Supposed we are asked:  Is C4 isomorphic to C2 x C2.  In this case, C4 is of 
order 4, C2 x C2, is of order 4, but here the answer is no: C4 is NOT 
isomorphic to C2 x C2.  We are using the theorem  

 
Theorem 4:  If two groups are isomorphic then the number of elements of each order 
are the same for both. 

 
Before we prove this theorem we will first look at some important results:  
 

Lemma 4.1:  If ϕ is a homomorphism of Γ into Γ�, then: 
1) ϕ(1) = 1� (where 1� is the unit element of Γ�) 
2) ϕ(x-1) = ϕ(x)-1 for all x ∈ Γ. 
 
Proof (1):  ϕ(x)1� = ϕ(x) = ϕ(x1) = ϕ(x)ϕ(1).  By cancellation property, ϕ(1) = 1�. 
Proof(2):  1� =  ϕ(1) = ϕ(x x-1) = ϕ(x)ϕ(x-1).  This implies that ϕ(x-1) = ϕ(x)-1.   

 
Theorem 5:  If ϕ : Γ → Γ� is an isomorphism then an element of order k ∈ Γ must get 
sent to an element of order k ∈ Γ�. 
 

Proof:  Suppose  a ∈ Γ has order m  (where m is the least positive integer such that 
am = 1).  Then ϕ(a)m = ϕ(am) since ϕ an isomorphism implies 
ϕ(a � a �� � a) = ϕ(a)* ϕ(a)�* ϕ(a) , where (�) is the binary operation in Γ and (*) the 
binary operation in G�.  But ϕ(am) = ϕ(1) = 1 by lemma 4.1 above.  Thus,  

ϕ(a)m = ϕ(am) = ϕ(1) = 1. 
If ϕ(a)k = 1 for some 0 < k < m, then ϕ(ak) = ϕ(a)k = 1.  But this implies that ak = 1 since 
ϕ is one-to-one, a contradiction.  Hence, if ϕ is an isomorphism from Γ to Γ� and a ∈ Γ, 
then order of ϕ(a) is equal to order of a.   

 
Now, we are ready to prove the following theorem: 
 

Theorem 4 (Restated):  If two groups are isomorphic then the number of elements of 
each order are the same for both. 
 

Proof:  Use the result above and the fact that isomorphism is a bijective mapping. 
 
Using Groups32 we see that the number of elements of various orders are 

not the same for both groups.  Here are the number of elements of each orders 
of C4 and C2 x C2 which are groups #4 and # 5 respectively in Groups32. 
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G8>> ORDERS   for Group Number 4 
 
Group number 4 of Order 4 
    1 elements of order  1:   A 
    1 elements of order  2:   C 
    2 elements of order  4:   B D 
 
G4>> ORDERS   for Group Number 5 
 
Group number 5 of Order 4 
    1 elements of order  1:   A 
    3 elements of order  2:   B C D 
    0 elements of order  4: 
 
 
Here, it is clear that C4 is NOT isomorphic to C2 x C2 using the fact that 

under isomorphism, an element of order k must get sent to an element of order 
k.  Since isomorphism must be a 1-1 onto mapping, there is no way we can 
send elements of C4 to elements of C2 x C2 without violating the condition of 
bijective mapping and the fact that the order of the elements is preserved 
under isomorphism.  By theorem above, if two groups are isomorphic then the 
number of elements of each order must be the same. 

Theorems 1, 2 and 4 deal with properties of groups that can be readily 
computed. Let us see if these theorems are enough to classify the seven 
abelian groups of order 32.  We will assert here that looking only at the 
number of elements of each orders is enough to classify these groups.  This 
assertion is deduced from a corollary to the Fundamental Theorem of Finite 
Abelian Groups which is stated as follows: 

 
Corollary 6:  Any finite abelian group is the direct product (sum) of cyclic groups of 

prime-power orders.   
 

Proof: A proof is given in any group theory book.  In particular, I find Herstein�s [3] 
interesting. 
 

Now let us look at how we can classify the seven abelian groups of order 
32.  Here we generated the number of elements of each orders for each of the 
seven abelian groups of order 32.  Our goal is to find to which cyclic 
decomposition of order 32 each of these groups is isomorphic to. 

 
Here are the seven non-isomorphic abelian groups of order 32: 
 
 
G37>> CHART   Order of Groups (1-32 or 0) Number 32 
      94   95*  96   97*  98*  99* 100* 101* 102* 103* 104* 
105* 106* 107* 108* 109  110* 111* 112* 113* 114  115* 116* 
117* 118* 119* 120* 121* 122* 123* 124* 125* 126* 127* 128* 
129  130* 131* 132* 133* 134* 135* 136* 137* 138  139* 140* 
141* 142* 143* 144 
        There are 51 Groups of order 32 
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        7 abelian and 44 non-abelian 
 
G37>> ORDERS   for Group Number 94 
 
Group number 94 of Order 32 
    1 elements of order  1:   A 
    1 elements of order  2:   L 
    2 elements of order  4:   H M 
    4 elements of order  8:   D I P S 
    8 elements of order 16:   C E K O R [ \ ] 
   16 elements of order 32:   B F G J N Q T U V W X Y Z ^ _ ` 
 
G94>> ORDERS   for Group Number 96 
 
Group number 96 of Order 32 
    1 elements of order  1:   A 
    3 elements of order  2:   E I Q 
   12 elements of order  4:   C D F J L N P W X Y [ \ 
   16 elements of order  8:   B G H K M O R S T U V Z ] ^ _ ` 
    0 elements of order 16: 
    0 elements of order 32: 
 
G96>> ORDERS   for Group Number 109 
 
Group number 109 of Order 32 
    1 elements of order  1:   A 
    3 elements of order  2:   D K Q 
    4 elements of order  4:   G L N [ 
    8 elements of order  8:   C H J O R Y Z ^ 
   16 elements of order 16:   B E F I M P S T U V W X \ ] _ ` 
    0 elements of order 32: 
 
G109>> ORDERS   for Group Number 114 
 
Group number 114 of Order 32 
    1 elements of order  1:   A 
    7 elements of order  2:   C E I M O P Y 
   24 elements of order  4:   B D F G H J K L N Q R S T U V W X Z [ \ 
] ^ _ ` 
    0 elements of order  8: 
    0 elements of order 16: 
    0 elements of order 32: 
 
G114>> ORDERS   for Group Number 129 
 
Group number 129 of Order 32    
1 elements of order  1:   A 
    7 elements of order  2:   D G I J P Q ] 
    8 elements of order  4:   C K M N W X Y [ 
   16 elements of order  8:   B E F H L O R S T U V Z \ ^ _ ` 
    0 elements of order 16: 
    0 elements of order 32: 
 
G129>> ORDERS   for Group Number 138 
 
Group number 138 of Order 32 
    1 elements of order  1:   A 
   15 elements of order  2:   C D G I J L M N O P W X Y \ _ 
   16 elements of order  4:   B E F H K Q R S T U V Z [ ] ^ ` 
    0 elements of order  8: 
    0 elements of order 16: 
    0 elements of order 32: 
 
    0 elements of order 16: 
    0 elements of order 32: 
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G138>> ORDERS   for Group Number 144 
 
Group number 144 of Order 32 
    1 elements of order  1:   A 
   31 elements of order  2:   B C D E F G H I J K L M N O P Q R S T U 
V W X Y Z [ \ ] ^ _ ` 
    0 elements of order  4: 
    0 elements of order  8: 
    0 elements of order 16: 
    0 elements of order 32: 

 
 

The group # 94 has elements of order 32.  This implies that 
group #94 ≅ C32.  Group #109 has elements of order 16.  Therefore, this must 
be isomorphic to C16 x C2.  Now, let�s look at group #96 and group #129.  
Both have elements of order 8.  We have two cyclic decompositions to choose 
from which consist of C8 as the maximal cyclic subgroup, that is, C8 x C4 or 
C8 x C2 x C2.  The question now is how do we know which one is isomorphic 
to which.  To solve this problem, we have the following lemma: 

 
Lemma 7:  Let Γ  have type ( , �, ), where n is the number of factors in the 

direct product of Γ .  Then the number of elements of order p in Γ is p

1rp , 2rp nrp
n �1. 

 
Proof: To prove this we need to first state and prove two important theorems.   

  
Theorem 7.1:  Let Γ be the cyclic group of order n, and let x be an element of Γ.  The 

number of solutions to xk = 1 is gcd( k, n ). 
 

Proof:  Case 1 :  k and n are relatively prime.  Then by Euclidean algorithm, there exist s, 
t ∈ ∧, s ≠ 0, t ≠ 0  such that                  
   ks + nt = 1 
   (xk) s * (xn) t = x1 
    (xk) s  = x1-nt  
  This implies that if xk = 1, then  x1-nt is also equal to the identity 1.  In 
other words,  
   x1-nt = (xk) s  = 1 
But  x1-nt = 1 if and only if x = 1 since yn = 1for any element y in a group of order n.  
Hence if k and n are relatively prime, gcd(k,n) = 1, then we have one solution to xk  = 1.     
 
Case 2:  k and n have common divisors.  Without loss of generality we will take the 
highest divisor d ≠ 1 that divides both k and n.  Then, there exist s and t in ∧, s ≠ 0, t ≠ 0  
such that     
   d = ks + nt 
   xd = (xk) s * (xn) t  
   xd  = (xk) s  * 1 
If xk = 1, then xd = 1 is also satisfied since  
   xd  = (xk) s  * 1 
   xd  = (1) s  * 1 = 1 
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By Thm 8.1 and Thm 8.2, which will be stated and proved in the next few pages we find 
that for every d that divides the order of cyclic group Γ, there is a unique cyclic subgroup 
Η of order d which contains all the elements x ∈ Γ satisfying the equation  xd  = 1.  Thus, 
there are exactly d solution to xd = 1, where d = gcd(k,n). 
 
We summarize by saying that in a cyclic group of order n the number of solutions to 
xk = 1 is gcd(k,n). 
 
 

Theorem 7.2:  Let Γ ≅ C1 x C2 x � x Cm and let x in Γ.  Let SOLS(k, Ci) be the number 
of solutions to xi

k = 1, xi in Ci.   Then the number of solutions to xk = 1 ∈ Γ is 
equal to ∏  

=

m

i iCkSOLS
1

).,(
 

Proof:   Γ ≅ C1 x C2 x � x Cm implies that for any element x in Γ,  x = (x1 , x2 , �, xm ) is 
an m-tuple where xi is an element of Ci.   Thus,  
     xk = (x1 , x2 , �, xm )k = (x1

k  , x2
k   �, xm

k ) = 1  
if and only if each xi

k = 1.   Therefore, the number of solutions to  xk = 1 is equal to the 
product of the number of solutions of each xi

k = 1 in Ci. 
 

We are now ready to prove our lemma. 
 
Lemma 7 (Restated):  Let Γ  have type ( , �, ), where n is the number of 

factors in the direct product of Γ .  Then the number of elements of order p in Γ is 
p

1rp , 2rp nrp

n �1. 
 

Proof:  Let Γ = C1 x C2 x � x Cn, with Ci cyclic of order pi. Using  theorem 7.1 and 
theorem 7.2 we find that  

 SOLS(p, Γ) =  = = p∏ =

m

i iCpSOLS
1

),( ∏ =

m

i
ripp

1
),gcd( n, 

 but this includes the identity element of Γ since the identity 1 is a solution to xp = 1.  
Hence, the number of elements of order p in Γ is pn � 1.  
 
 

Using this lemma, we can now find the cyclic decomposition of group #96 
and group #129.  As stated in the lemma, we can look at the number of 
elements of order p, in this case p = 2, since 32 = 25.  Notice that group #96 
has 3 elements of order 2, in which 3 = 22 � 1.  This implies that group #96 is 
isomorphic to C8 x C4.  The maximal cyclic subgroup is of order 8 and the 
cyclic decomposition consists of two invariant factors which satisfy the 
lemma above.  This result implies that group #129 ≅ C8 x C2 x C2.  Let us 
check the number of elements of order 2 in group #129.  There are 7 = 23 � 1 
elements of order 2, which again satisfy our lemma.  Group #138 has highest 
element of order 4 and the number of elements of order 2 is 15 = 24 - 1.  
Therefore, group #138  ≅  C4 x C2 x C2 x C2.  This leads us to 
group #144 ≅ C2 x C2 x C2 x C2 x C2. 
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As mentioned earlier we now state more theorems that lead us to this 
result.   

 
Theorem 8.1: Let Γ = Cn be the cyclic group of order n.  Then for each d that divides n 

there exists a unique subgroup Η(cyclic) of order d.   
 

Proof:  First we recall that the subgroups of a cyclic group are all cyclic.  If a is a 
generator of Γ, then  Η = < an/d > is a subgroup of order d.  Assume <b> is a subgroup 
of order d.  Now bd = 1, and b ∈ Γ implies b = am for some m.  Hence  amd = 1 implies 
md = nk for some k, and b = am = (an/d ) k = 1.  Therefore, <b> ⊂ Η.  But 
|<b>| = |Η| = d which implies that in fact <b> =  Η since there is one and only one 
cyclic group for every order c, where c is a positive integer.   

 
Theorem 8.2:  Let Γ = Cn be the cyclic group of order n.  Then Γ contains exactly d 

elements x ∈ G satisfying xd = 1 for all positive integer d that divides n = |Γ|.   
 

Proof:  Combine results in theorems  8.1, 8.3 and 8.4. 
 

Theorem 8.3:   Let Γ = Cn be the cyclic group of order n.  Let x ∈ Γ be a solution to 
xd = 1, d divides n=|Γ|, then x ∈ Η, where Η ⊂ Γ is the unique subgroup of order 
d. 

 
Proof:  Let Γ = <a>  and Η = < an/d >, then Η is the unique subgroup of order d by 
theorem 0.1.  Clearly, xd = 1 implies if |x| = s then sd = kn.  Thus, s = (n/d) k.  But 
Η = < an/d > which implies that x ∈ Η.   
 

Theorem 8.4:  Let Γ = Cn be the cyclic group of order n.  Let Η ⊂ Γ, |Η| = d.  Then for 
all y ∈ Η,  yd = 1.   

 
Proof:  Since |Η| = d then every element y ∈ Η satisfy yd = 1 by definition of order of a 
group.   
 

Theorem 9:  If Γ is a finite abelian group and p is a prime dividing |Γ|, then Γ contains 
an element of order p. 

 
Proof: [by Dummit[9]] The proof proceeds by induction on |Γ|, namely, we assume the 
result is valid for every group whose order is strictly smaller than the order of Γ and then 
prove the result valid for Γ (this is sometimes referred to as complete induction).  Since 
|Γ| >1, there is an element x ∈ Γ with x ≠ 1.  If |Γ| = p then x has order p by Lagrange�s 
Theorem and we are done.  We may therefore assume |Γ| > p. 

Suppose p divides |x| and write |x| = pn.  Thus, |xn| = p, and again we have an element of 
order p.  We may therefore assume that p does not divide |x|.   

Let N = <x>.  Since Γ is abelian, N is normal to Γ.  By Lagrange�s Theorem, the order of 
the quotient group Γ/N = |Γ| / |N| and since N ≠ 1, |Γ/N| < |Γ|.  Since p does  not divide 
|N|, we must have p | |Γ/N|.  We can now apply the induction assumption to the smaller 
group Γ/N to conclude it contains an element, y� = yN, of order p.  Since y ∉ N (y� ≠ 1�) 
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but yp ∈ N (y�p = 1�), we must have <yp> ≠ <y>, that is, |yp| < |y|.  This implies p| |y|.  We 
are now in the situation described in the preceding paragraph, so that argument again 
produces an element of order p.  The induction is complete.   

 

 
Theorem 10:  Given the number of elements of each order of a group Γ, we can count 
the number of solutions to xk=1, x∈ Γ, by the following formula: 

       Γ)= Γ)    ,(kSOLS ∑ kd
dOrds

|
,(

Proof:  The formula above is a consequence of the following lemma. 

 

Lemma 10.1: Let a ∈ Γ, |a| = m.  We have ak = 1 if and only if m | k. 

Proof:  (⇐) If m | k then ak = 1. 
       m divides k implies that there exists an integer c such that cm = k.  Thus, 
               ak = acm = (am)c = (1)c = 1. 

 (⇒) If ak = 1 then m | k. 
      Let d = gcd(k, m).  Then there exists s, t with  

sk + tm = d 
ask + tm  = ad 

(ak)s (am)t = ad 

(1)s (1)t = ad 

     1 = ad 
But d = gcd(k, m) implies that d ≤ m.  If d < m, then 1 = ad is a contradiction to the fact 
that the order of a is m, since m = |a| implies that m is the smallest number such that 
am = 1.  Therefore, it must be that d = m.  Hence m | k. 

 
Theorem 11.    A finite abelian group can be expressed as a direct product of its Sylow 
subgroups. 
 

Proof:  [by Beachy[12]]  Let Γ be a finite abelian group, with |Γ| = npα, where p does not 

divide n.  Let H1 = {a ∈ Γ | = 1} and let K
αpa 1 = {a ∈ Γ | an = 1}.  Since Γ is abelian, 

both are subgroups, and H1 is the Sylow p-subgroup of Γ.   
We will show that (i) H1 ∩ K1 = {1} and (ii) H1K1 = Γ.  This shows that Γ is isomorphic 
to the direct product of H1 and K1.  Then we can decompose K1 in a similar fashion, etc., 
to get Γ ≅ H1 x H2 x�x Hk, where each subgroup Hi is a Sylow p-subgroup for some 
prime p.   

To prove (i), we simply observe that if a ∈ H1 ∩ K1, then the order of a is a common 
divisor of pα and n, which implies that a = 1.  To prove (ii), let a ∈ Γ.  Then the order k 
of a is a divisor of pαn, andso k = pβm, where m | n, β ≤ α, and p does not divide m.  
Since gcd(pβ, m) = 1, there exist r, s ∈ ∧ with ms + pβr = 1.  Then a and 

a ∈ H

,)()( rpsm aa
α

=

1K1 since am ∈ H1 and a ∈ K
βp

1.  The last statement follows from the fact that 
 and ( since mp1)( =

βpma 1) =npa
β α and npβ are multiples of the order of a. 
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Below is a recipe on how to get the cyclic decomposition of abelian 

groups.  We will apply this to some abelian groups to see how it works.   
 
Step 1: The first step in determining the cyclic decomposition of an 

abelian group of order n is the factorization of n into prime powers.  We will 
state without proof that by the Fundamental Theorem of Arithmetic, if n > 1 ∈ 
∧, then n admits a factorization into primes.  Further, this factorization is 
unique up to ordering.  So we let   

  

....21
21

k
kpppn ααα=  

 
By theorem 11, a finite abelian group can be expressed as a direct product 

of its Sylow p-subgroups. Therefore,  
    

 Γ ≅ S1 x S2 x � x Sk,                               (1) 
 
where Si is the Sylow pi � subgroup of order  and where  ,i

ipα

 
t

iii pppi xCxxCCS βββ ...21≅  ,    (2) 

  
 are called the elementary divisors of Γ,  with βjpβ

1 ≥  β2 ≥   � ≥ βt  ≥ 1 
and β1 + β2  +�+ βt  = αi    (where t depend on i) .                                         

 
 We note that each Sylow subgroup is normal to Γ since Γ is abelian and thus 
unique.  The decomposition of Γ described in (1) and (2) is therefore unique 
and is called the elementary decomposition of Γ.  
 

Step 2:  We will use lemma 7 to identify the type of Si .  As mentioned 
earlier, Si is a pi � subgroup, hence has an element of order pi by theorem 9.  
We count the number of elements of order pi to determine the number of 
partition of αi.  Using lemma 7, if the number of elements of order pi is equal 
to pi r � 1, for some positive integer r, then we partition αi into r.  We also 
need to identify the maximal cylic subgroup Cm so that m1 is the highest 
partition of r and such that Si ≅  Cm1 x  Cm2 x � x  Cmr , α = m1 + m2 +�+ mr.  
We identify m1 by looking at the highest-order element whose order is a 
power of pi . In other words, m1 is equal to k such that we have an element of 
order pi k and no elements of order pi t, for any t > k .  
 
 Note:  In the case that α can be partitioned into r parts in more than one 
way having the same highest partition m1 we resolve this by Step 2.1. 
 Otherwise we proceed to step 3. 
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Step 2.1:  To resolve the problem mentioned above, we will use 
theorems 7.1, 7.2 and 10.  Since we are given the number of elements of each 
order d dividing the order of the group Γ, we can calculate the number of 
solutions to xd = 1 using theorem 10. We then compare the result to one of the 
cyclic decomposition we computed in step 2.   By theorem 7.2, given the 
cyclic decomposition we can compute easily the number of elements in Γ 
satisfying xd = 1.  If we get a match then we have the correct cyclic 
decomposition, otherwise we proceed to the other cyclic decomposition we 
got from step 2.  We keep doing this until we get a match. 
 
We note that this is not very expensive to execute since we have a simple 
formula for calculating the solutions to xd = 1 either given the cyclic 
decomposition or given the number of elements of each orders dividing n.   
 

Step 3:   Now that we have the elementary decomposition of Γ the next 
step is to obtain the invariant factors of Γ from its elementary divisors.  By the 
Fundamental Theorem of Finite Abelian groups, 
 
   Γ ≅ ,  

snnn xCxxCC ...
21

 
for some integers n1, n2, �, ns satisfying the following conditions: 
 

(a)    nj ≥ 2 for all j and 
(b)      nj+1 | ni  for 1 ≤ j≤ s-1 

 
The integers n1, n2, �, ns are called the invariant factors of Γ. 
 
We obtain the invariant factors by following these steps: 
 

(i) For every Si arrange its elementary divisors in non-increasing order.  In 
this way we obtain k list of integers one for each pi .   

(ii) To obtain the jth invariant factor of Γ, nj , we take the product of the 
jth component of each of our k list of elementary divisors.  In the case 
that there is no jth component in a list we multiply it by 1. 

 
This procedure guarantees that we have divisibility condition satisfied.  

We also note that because the integers in one list is relatively prime to all the 
other integers in the other lists, C is cyclic.  This is in fact always true since 
the direct product of cyclic groups whose orders are relatively prime is 
isomorphic to the cyclic group of order q, where q is the product of orders of 
each cyclic group in the direct product.       

in

To illustrate how the procedure works we will take a look at some 
examples.    
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Input:  1)  |A| = 256 
                          

 
Number of 
elements 

 

 
Of order 

 
 

1       
15  
112  
128  
0  
0  
0  
0  
0 

1 
2 
4 
8 
16 
32 
64 
128 
256 

 
 

Output:    Cyclic decomposition of A. 
 

Step 1: |A| = 256 = 28 
 

Step 2: |S1| = 28 .  α = 8.  The number of elements of order 2 is equal to 15 
which implies that by lemma 2, r = 4 since 24 � 1 = 15.  Thus we need to 
partition α = 8 into r = 4 parts m1, m2, m3, m4, such that 
m1 + m2 + m3 + m4 = 8.   
 
Notice that the element with highest order is of order 8 = 23.  This implies that 
m1 = 3.  Now we need to partition 8 � 3 = 5 into 3 parts.  We have two choices 
5 = 3 + 1 + 1 or 5 = 2 + 2 + 1.  To resolve this conflict we proceed to step 2.1.   
 
Step 2.1 Calculate the number of solutions to xk = 1, for every k dividing 
|A| = 256.  Using the formula in theorem 10:  

     
SOLS(k,Γ) = Γ) , ∑

kd

dOrd
|

,(

we get the following result: 
 
 

k Number of solutions to xk =1 
SOLS(k,Γ) 

1 
2 
4 
8 

16 
32 
64 

128 
256 

1 
1 + 15 = 16 

1 + 15 + 112 = 128 
1 + 15 + 112 + 128 = 256 

1 + 15 + 112 + 128 + 0 = 256 
1 + 15 + 112 + 128 + 0 + 0= 256 

1 + 15 + 112 + 128 + 0 + 0 + 0 = 256 
1 + 15 + 112 + 128 + 0 + 0 + 0 + 0 = 256 

1 + 15 + 112 + 128 + 0 + 0 + 0 + 0 + 0 = 256 
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Now we calculate the number of solutions to xk = 1, x ∈ C8 x C8 x C2 x C2.  
This corresponds to partition of α = 8 = 3 + 3 + 1 + 1.  Using the formula in 
theorem 7.1 and 7.2:  
   
    SOLS(k, Cn ) = gcd(k,n),  

   SOLS(k, C1 x C2 x �x Cm) = ∏   ),(
1=

m

i
iCkSOLS

we get the following result: 
 

k Number of solutions to xk =1 
SOLS(k,Γ) 

1 
2 
4 
8 

16 
32 
64 

128 
256 

1 
16 
64 

256 
256 
256 
256 
256 
256 

 
  
Notice that the number of solutions to xk = 1 in A does not match with the 
number of solutions to xk = 1 in ∈ C8 x C8 x C2 x C2. 
 

Clearly, this implies that we should have the other partition of 
α = 8 = 3 + 2 + 2 + 1 which corresponds to the cyclic decomposition  
C8 x C4 x C4 x C2.  To verify that we have the correct cyclic decomposition for 
A we calculate the number of solutions to xk = 1 in  C8 x C4 x C4 x C2 and see 
if it matches the number of solutions to xk = 1 in A.  Again using the formula 
in theorem 7.1 and 7.2 we get the following result: 

 
 

k Number of solutions to xk =1 
SOLS(k,Γ) 

1 
2 
4 
8 

16 
32 
64 

128 
256 

1 
16 

128 
256 
256 
256 
256 
256 
256 
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Indeed, we have a match.   
 
Step 3:   Check if the decomposition satisfies condition a) and b).  Since we 
only have one Sylow p � subgroup, our elementary divisors is exactly the 
invariant factors of Γ.  
 
Output: A ≅ C8 x C4 x C4 x C2.   
 
To summarize this result : 
 
We started by factoring |A| = 256 into prime powers.  Then we note that the 
number of elements of order 2 is equal to 24 �1 =15.  This implies that our 
cyclic decomposition for group A consist of 4 invariant factors.   
 
Now we look at the highest order of element in A.  The highest order of 
element in A is 8 therefore C8 must be present in our decomposition.  So far 
we have that A ≅ C8 x H where |H| = 32 since 8 * 32 = 256 = |A|.  Now we 
need to find the cyclic decomposition for H.  We know from the previous 
computation that H must consist of 3 factors. There are two choices for H 
having 3 factors and in which |H| = 32, that is, C8 x C2 x C2 or C4 x C4 x C2.  
 
We then use theorem 7.1 and 7.1 to resolve this conflict.  We proceed by 
matching the number of solutions to xk = e in A to the number of solutions to 
xk = 1 in ≅ C8 x H.  If we take H = C4 x C4 x C2, we are then testing if A ≅ C8 
x C4 x C4 x C2.  Now we check the number of elements of order 8.  There are 
4 elements of order 8 in C8.  This implies that there are 4*4*4*2 = 128 
elements of order 8 in A, which is the same number given above.  We do this 
until we find a match.  
 
Let us look at another example. 
 
Input:  1)  |B|=2592 
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Number of 
elements 

 

 
Of order 

 
 

1 
7 

26 
24 

182 
0 

54 
624 

0 
378 

0 
0 
0 

1296 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

 

1 
2 
3 
4 
6 
8 
9 

12 
16 
18 
24 
27 
32 
36 
48 
54 
72 
81 
96 

108 
144 
162 
288 
864 
324 
216 
648 
432 

1296 
2592 

 
 

Output:    Cyclic decomposition of B. 
 

Step 1:  |B| = 2592 = 25 * 34 
 

Step 2:  First we note that a group of order 2592 = 25 * 34 has a 2- Sylow 
subgroup and a 3-Sylow subgroup.  Let S2 = 2-Sylow subgroup, S3 = 3-Sylow 
subgroup.  By the Fundamental Theorem of Finite Abelian Groups we know 
that Γ ≅ S2 x S3.  |S2| = 32, |S3| = 81, |Γ| = 2592.  We need to find the cyclic 
decomposition of S2 and S3.  Here we assert that if S2 is of type (  
and S

)2,...,2 1 nrr

3 is of type (  then the type of Γ = S)3,...,3 1 mss
2 x S3 is 

.  This assertion is as a result of the Fundamental )3,...,3,2,...,2( 11 mn ssrr
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Theorem of Finite Abelian Groups which states that every abelian group is a 
direct product of its Sylow subgroups.  Every p-Sylow subgroup can be 
decomposed as a direct product of cyclic groups of prime power order.  Thus, 
by the definition of  type, this implies that the type of S2 x S3 is 

.  All we need to do now is to find the cyclic 
decomposition of S

)3,...,3,2,...,2( 11 mn ssrr

2 and S3 and then augmenting the result will give the cyclic 
decomposition of Γ. 

To find the cyclic decomposition of S2, we only look at the elements of G 
of order 2k, for some constant k.  Notice that there are no elements of order 32, 
order 16 or order 8.  Also note that the number of elements of order 2 is equal 
to 7 = 23 �1.  This implies that S2 have 3 factors in its cyclic decomposition 
and the factor with the highest order is C4 since there are no elements of order 
32,16 or 8. Hence, S2 = C4 x C4 x C2.   

To find the cyclic decomposition of S3, we look at the elements of G of 
order 3k, for some constant k.  Notice that there are no elements of order 81 or 
order 27.  Also note that the number of elements of order 3 equals 26 = 33 �1.  
This implies that S3 have 3 factors in its cyclic decomposition and the factor 
with the highest order is C9.  Hence S3 = C9 x C3 x C3.  Thus we have 
Γ ≅ C4 x C4 x C2 x C9 x C3 x C3. 
 
Step 3:   To satisfy condition a) and b) above we follow steps i) and ii) to find 
the invariant factors of Γ.  Thus, we get Γ ≅ C36 x C12 x C6.  Notice that the 
element with the highest order in Γ has order 36.  We can use Theorem 7.1 
and 7.2 stated above to verify that this is correct. 
 

 
What we have shown here is that the structure of an abelian group can be 

determined from the number of elements of various orders.   

The converse is:  Suppose two groups have certain properties the same � 
for example, suppose they have the same number of elements of each order � 
are they isomorphic?  The answer is YES for ABELIAN groups but NO in 
general.  As mentioned earlier, there exist two NON-isomorphic NON-abelian 
groups with the same number of elements of each order.  Now we will look at 
the non-abelian case and see that these groups are not classified so simply.   
 

Here is our counter-example to the converse of theorem above: 
 
 
G35>> ORDERS   for Group Number 36 
 
Group number 36 of Order 16 
    1 elements of order  1:   A 
    7 elements of order  2:   C E G I K N P 
    8 elements of order  4:   B D F H J L M O 
    0 elements of order  8: 
    0 elements of order 16: 
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G36>> ORDERS   for Group Number 37 
 
Group number 37 of Order 16 
    1 elements of order  1:   A 
    7 elements of order  2:   C E G I K M O 
    8 elements of order  4:   B D F H J L N P 
    0 elements of order  8: 
    0 elements of order 16: 

 

   
 
The two smallest non-isomorphic groups with this property are group #36 

and group #37 of order 16 in Groups32 package.  First of all, we know that 
these two groups are non-abelian.  We can use the CHART command or the 
EVALUATE command and see that not all the elements of the group commute 
with each other.  Another way to check if a group is non-abelian is by using 
the CENTER command.  This command outputs the center of the group.  If the 
center of the group Γ is all of Γ then Γ is abelian otherwise it is non-abelian.  
Here is an example using the EVALUATE and CHART command: 

 
 
G37>> EVALUATE   (use ' for inverse) bc= D 
G37>> EVALUATE   (use ' for inverse) cb= D 
G37>> EVALUATE   (use ' for inverse) bi= N 
G37>> EVALUATE   (use ' for inverse) ib= J 
 
G37>> GROUP   Group Number 36 
G36>> EVALUATE   (use ' for inverse) bc= D 
G36>> EVALUATE   (use ' for inverse) cb= D 
G36>> EVALUATE   (use ' for inverse) bp= M 
G36>> EVALUATE   (use ' for inverse) pb= M 
G36>> EVALUATE   (use ' for inverse) ei= O 
G36>> EVALUATE   (use ' for inverse) ie= M 
 
G36>> CHART   Order of Groups (1-32 or 0) Number 16 
      29   30   31   32   33   34*  35*  36*  37*  38*  39*  40* 
      41*  42* 
        There are 14 Groups of order 16 
        5 abelian and 9 non-abelian 

Note:  In Groups32 (*) means NON-ABELIAN  

 
Below is an example using the CENTER command.  Notice that in each 

case, the center of groups #36 and #37 is not the whole group since we know 
from the earlier result the groups #36 and #37 are of order 16. 
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  CENTER       CENTRALIZER  CHART        CONJ-CLS 
  COSETS       EVALUATE     EXAMPLES     GENERATE 
  GROUP        HELP         INFO         ISOMORPHISM 
  LEFT         NORMALIZER   ORDERS       PERMGRPS 
  POWERS       QUIT         RESULT       RIGHT 
  SEARCH       STOP         SUBGROUPS    TABLE 
  X 
 
G1>> CENTER   of Group Number 36 
{ A B C D } 
G36>> CENTER   of Group Number 37 
{ A C E G } 
 
 
What we have shown here is that the number of elements of each order is 

not enough to determine the structure of NON-abelian groups.  Thus, for non-
abelian groups, we need to look at more invariants beside the number of 
elements of each order.  Here, we find that particular invariants of a group 
which can be readily calculated have different significance in classifying 
groups.  For the abelian our answer is YES  we can classify them by looking 
at the number of elements of each orders, for the non-abelian groups our 
answer is NO.   

To identify invariants that will distinguish non-abelian groups (at least for 
groups of orders 1�32) from one another will be the goal of my next paper.   
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