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1 Holomorphic functions

A complex function f(x, y) = u(x, y) + i v(x, y) can be also regarded as a function of
z = x + i y and its conjugated z because we can write

f(
z + z

2
,
z − z

2 i
) = u(

z + z

2
,
z − z

2 i
) + i v(

z + z

2
,
z − z

2 i
)

Classically a holomorphic function f was defined as a function f such that the expres-
sion u( z+z

2
, z−z

2 i
)+i v( z+z

2
, z−z

2 i
) does not contain, after simplification, the letter z or what

is the same f does not depend upon z .

It is standard to denote O(D) the set of holomorphic functions on D .

From calculus we know that a given function f do not depends on a variable, say w
if the partial derivative ∂f

∂w
is identically zero.

So a simpler way of saying that a function f does not depend on z is as follows:

∂f

∂z
= 0 (1)

The problem is that we have no definition of the partial derivative with respect to z .

Example 1.1. Any polynomial f(z) = anz
n + an−1z

n−1 + · · ·+ a0 gives an holomorphic
function. Moreover, a convergent power series f(z) =

∑∞
k=0 ckz

k gives a holomorphic
function in his disc of convergence. The function f(x, y) = x2 + y2 is not holomorphic.
Why?.
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To give a meaning of the partial derivatives ∂f
∂z

and ∂f
∂z

we assume that such partial
derivatives do exists and try to find their definition as follows:

df =
∂f

∂x
dx +

∂f

∂y
dy =

∂f

∂z
dz +

∂f

∂z
dz (2)

and since x = z+z
2

and y = z−z
2 i

we get

dx =
dz + dz

2

dy =
dz − dz

2 i
so we get

df =
∂f

∂x
dx +

∂f

∂y
dy

=
∂f

∂x

(
dz + dz

2

)
+

∂f

∂y

(
dz − dz

2 i

)

=

(
1

2

∂f

∂x
+

1

2 i

∂f

∂y

)
dz +

(
1

2

∂f

∂x
− 1

2 i

∂f

∂y

)
dz .

Then we give the following definition of the complex partial derivatives:





∂f
∂z := 1

2
∂f
∂x + 1

2 i
∂f
∂y

∂f
∂z := 1

2
∂f
∂x − 1

2 i
∂f
∂y

If f is differentiable1 we get

f(z)− f(z0)

z − z0

=
∂f
∂z

.(z − z0) + ∂f
∂z

(z − z0) + o(|z − z0|)
z − z0

(3)

Thus, we get that ∂f
∂z

= 0 if and only if the Newton’s quotient has a limit. Namely,

lim
z→z0

f(z)− f(z0)

z − z0

= f ′(z0) =
∂f

∂z
(z0) (4)

Indeed, since ∂f
∂z

= 0 we get equation (4) when z → z0 from equation 3 and viceversa
since the limit of the quotient

z

z
1For example if the partial derivatives of u, v are continuous functions.
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does not exist when z → 0.

1.1 Chain rule

Here is simple consequence of (2). Assume that f ∈ O(D) and that z : [a, b] → D is a
curve, i.e. z(t) = x(t) + i y(t). Then,

df(z(t))

dt
= f ′(z(t)).z′(t)
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Cauchy-Riemann’s conditions

We can define f to be holomorphic if either the limit (4) do exists or equivalently if
∂f
∂z

= 0.

Now assume that f is holomorphic. Then ∂f
∂z

= 0. We can write this condition in
terms of the partial derivatives of the functions u, v as follows:

∂f

∂z
=

∂u + i v

∂z

=
∂u

∂z
+

∂ i v

∂z

=
1

2

∂u

∂x
− 1

2 i

∂u

∂y
+

1

2

∂ i v

∂x
− 1

2 i

∂ i v

∂y

=

(
1

2

∂u

∂x
− 1

2

∂v

∂y

)
+ i

(
1

2

∂v

∂x
+

1

2

∂u

∂y

)

and we obtain the famous Cauchy-Riemann’s conditions for a holomorphic function
f = u + i v

{
ux = vy

uy = −vx

(5)

Here is how Riemann originally found the above equations.

By equation (4) the quotient
du + i dv

dx + i dy

is well defined, i.e. independent of dx, dy . So computing the differential in the numerator
we have

(ux + i vx) dx + (vy − i uy) i dy

dx + i dy

and this is independent of dx, dy if and only if

(ux + i vx) = (vy − i uy)

which are equations (5).

Theorem 1.2. If f is holomorphic and f ′(z) = 0 then df ≡ 0 and f is locally constant.

Proof. Since f = u + i v is holomorphic we have ∂f
∂z

= 0 and f ′(z) ≡ 0 is equivalent

to ∂f
∂z

= 0. Then by equation 2 we get df ≡ 0. This means that the functions u, v are
locally constant. 2
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Interpretations of the CR conditions and harmonic functions

The differential df is related to the Jacobian matrix as follows

df = Jf

(
dx
dy

)
=

(
ux uy

vx vy

) (
dx
dy

)

Now if f is holomorphic the Cauchy-Riemann’s equations are:
(

ux uy

vx vy

)
=

(
ux −vx

vx ux

)

Which means that the Jacobian matrix is given by multiplication against the complex
number ux + i vx . Namely, Jf is the 2 × 2 matrix associated to the multiplication by
ux + i vx .

From the geometric interpretation of the multiplication by complex numbers we get
that near z0 if f ′(z0) 6= 0 the behavior of f is like a rotation followed by an expansion.
In particular a point where f ′(z0) can not be a minimum or a maximum of |f(z)| .

Here is another interpretation of Cauchy-Riemann’s equations. Let us write the
gradient ∇u as a complex number

∇u = ux + i uy

Then the gradient ∇v = vx + i vy is obtained from ∇u by a 90◦ counterclockwise. That
is to say,

∇v = i∇u

In general if a vector field is a gradient then its 90◦ counterclockwise rotation is not a
gradient.

Another easy but important observation is the harmonicity of the functions u, v .
Namely, if f = u + i v is holomorphic then

{
∆u = uxx + uyy = 0

∆v = vxx + vyy = 0
(6)

Indeed, uxx = vyx = vxy = −uyy and so uxx + uyy . But also notice that

∆

4
=

∂

∂z

∂

∂z
=

(
1

2

∂

∂x
+

1

2 i

∂

∂y

)(
1

2

∂

∂x
− 1

2 i

∂

∂y

)
=

∂2

∂x2 + ∂2

∂y2

4
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Analytic functions.

A complex function f is called analytic if around each point z0 of its domain the function
f can be computed by a convergent power series. More precisely, for each z0 there exists
ε > 0 and a sequence of complex numbers (a0, a1, · · · ) such that

f(z) = a0 + a1(z − z0) + a2(z − z0)
2 + · · · =

∞∑

k=0

ak(z − z0)
k (7)

for |z − z0| < ε .

If f is analytic then f and all its derivatives are holomorphic. The derivatives
can be computed as the derivatives of a convergent power series,i.e. by deriving term by
term. In particular,

f (n)(z0) =
an

n!

which shows that the expression of f as a power series at z0 is unique.

If the power series (7) is convergent for all z ∈ C , i.e. not just for |z − z0| < ε , the
function f is called entire function.

An important example of entire function is the exponential ez defined by the power
series:

ez = 1 + z +
z2

2
+ · · · =

∞∑

k=0

zk

k!
.

Notice that the derivative of ez is itself.

A simple computation shows the Euler’s formula

ei θ = cos(θ) + i sin(θ)

for θ ∈ R .

The geometric series
g(z) = 1 + z + z2 + z3 + · · ·

is convergent for |z| < 1 and so g(z) is holomorphic. If |z| < 1 then

(1− z)g(z) = 1 + z + z2 + · · · − z − z2 − · · · = 1
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so

g(z) =
1

1− z
.

The series

G(z) = z +
z2

2
+

z3

3
+

z4

4
+ · · ·

is also convergent for |z| < 1 and G′(z) = g(z).

Notice that (1−z)eG(z) = 1 for all |z| < 1. So G(z) can be regarded as the logarithm
of 1

1−z
.
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