L2: Holomorphic and analytic functions.

Contents:

- Holomorphic functions.
- Cauchy-Riemann conditions.
- Complex differentials and complex partial derivatives.
- Analytic functions.
- The exponential function.

1 Holomorphic functions

A complex function f(x, y) = u(x, y) + iv(x, y) can be also regarded as a function of z = x + iy and its conjugated \overline{z} because we can write

$$f(\frac{z+\overline{z}}{2},\frac{z-\overline{z}}{2i}) = u(\frac{z+\overline{z}}{2},\frac{z-\overline{z}}{2i}) + iv(\frac{z+\overline{z}}{2},\frac{z-\overline{z}}{2i})$$

Classically a holomorphic function f was defined as a function f such that the expression $u(\frac{z+\overline{z}}{2}, \frac{z-\overline{z}}{2i}) + iv(\frac{z+\overline{z}}{2}, \frac{z-\overline{z}}{2i})$ does not contain, after simplification, the letter \overline{z} or what is the same f does not depend upon \overline{z} .

It is standard to denote $\mathcal{O}(D)$ the set of holomorphic functions on D.

From calculus we know that a given function f do not depends on a variable, say w if the partial derivative $\frac{\partial f}{\partial w}$ is identically zero.

So a simpler way of saying that a function f does not depend on \overline{z} is as follows:

$$\frac{\partial f}{\partial \overline{z}} = 0 \tag{1}$$

The problem is that we have no definition of the partial derivative with respect to \overline{z} .

Example 1.1. Any polynomial $f(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_0$ gives an holomorphic function. Moreover, a convergent power series $f(z) = \sum_{k=0}^{\infty} c_k z^k$ gives a holomorphic function in his disc of convergence. The function $f(x, y) = x^2 + y^2$ is not holomorphic. Why?.

Mathematical Methods, L2

1

To give a meaning of the partial derivatives $\frac{\partial f}{\partial \bar{z}}$ and $\frac{\partial f}{\partial z}$ we assume that such partial derivatives **do exists** and try to find their definition as follows:

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy = \frac{\partial f}{\partial z}dz + \frac{\partial f}{\partial \overline{z}}d\overline{z}$$
(2)

and since $x = \frac{z + \overline{z}}{2}$ and $y = \frac{z - \overline{z}}{2i}$ we get

$$dx = \frac{dz + d\overline{z}}{2}$$
$$dy = \frac{dz - d\overline{z}}{2i}$$

so we get

$$df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$$

= $\frac{\partial f}{\partial x} \left(\frac{dz + d\overline{z}}{2} \right) + \frac{\partial f}{\partial y} \left(\frac{dz - d\overline{z}}{2i} \right)$
= $\left(\frac{1}{2} \frac{\partial f}{\partial x} + \frac{1}{2i} \frac{\partial f}{\partial y} \right) dz + \left(\frac{1}{2} \frac{\partial f}{\partial x} - \frac{1}{2i} \frac{\partial f}{\partial y} \right) d\overline{z}$

Then we give the following definition of the complex partial derivatives:

$$\begin{cases} \frac{\partial f}{\partial z} := \frac{1}{2} \frac{\partial f}{\partial x} + \frac{1}{2} \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial \overline{z}} := \frac{1}{2} \frac{\partial f}{\partial x} - \frac{1}{2} \frac{\partial f}{\partial y} \end{cases}$$

If f is differentiable¹ we get

$$\frac{f(z) - f(z_0)}{z - z_0} = \frac{\frac{\partial f}{\partial z} \cdot (z - z_0) + \frac{\partial f}{\partial \overline{z}} \overline{(z - z_0)} + o(|z - z_0|)}{z - z_0}$$
(3)

Thus, we get that $\frac{\partial f}{\partial \overline{z}} = 0$ if and only if the Newton's quotient has a limit. Namely,

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = f'(z_0) = \frac{\partial f}{\partial z}(z_0)$$
(4)

Indeed, since $\frac{\partial f}{\partial \overline{z}} = 0$ we get equation (4) when $z \to z_0$ from equation 3 and viceversa since the limit of the quotient

$$\frac{z}{z}$$

¹For example if the partial derivatives of u, v are continuous functions.

Mathematical Methods, L2

2

does not exist when $z \to 0$.

1.1 Chain rule

Here is simple consequence of (2). Assume that $f \in \mathcal{O}(D)$ and that $z : [a, b] \to D$ is a curve, i.e. z(t) = x(t) + i y(t). Then,

$$\frac{\mathrm{d}f(\mathbf{z}(t))}{\mathrm{d}t} = f'(\mathbf{z}(t)).\mathbf{z}'(t)$$

Cauchy-Riemann's conditions

We can define f to be holomorphic if either the limit (4) do exists or equivalently if $\frac{\partial f}{\partial \overline{z}} = 0.$

Now assume that f is holomorphic. Then $\frac{\partial f}{\partial \overline{z}} = 0$. We can write this condition in terms of the partial derivatives of the functions u, v as follows:

$$\begin{split} \frac{\partial f}{\partial \overline{z}} &= \frac{\partial u + \mathrm{i}\,v}{\partial \overline{z}} \\ &= \frac{\partial u}{\partial \overline{z}} + \frac{\partial \,\mathrm{i}\,v}{\partial \overline{z}} \\ &= \frac{1}{2}\frac{\partial u}{\partial x} - \frac{1}{2\,\mathrm{i}}\frac{\partial u}{\partial y} + \frac{1}{2}\frac{\partial \,\mathrm{i}\,v}{\partial x} - \frac{1}{2\,\mathrm{i}}\frac{\partial \,\mathrm{i}\,v}{\partial y} \\ &= \left(\frac{1}{2}\frac{\partial u}{\partial x} - \frac{1}{2}\frac{\partial v}{\partial y}\right) + \mathrm{i}\left(\frac{1}{2}\frac{\partial v}{\partial x} + \frac{1}{2}\frac{\partial u}{\partial y}\right) \end{split}$$

and we obtain the famous Cauchy-Riemann's conditions for a holomorphic function f = u + i v

$$\begin{cases} u_x = v_y \\ u_y = -v_x \end{cases}$$
(5)

Here is how Riemann originally found the above equations.

By equation (4) the quotient

$$\frac{\mathrm{d}u + \mathrm{i}\,\mathrm{d}v}{\mathrm{d}x + \mathrm{i}\,\mathrm{d}y}$$

is well defined, i.e. independent of dx, dy. So computing the differential in the numerator we have

$$\frac{(u_x + \mathrm{i}\,v_x)\,\mathrm{d}x + (v_y - \mathrm{i}\,u_y)\,\mathrm{i}\,\mathrm{d}y}{\mathrm{d}x + \mathrm{i}\,\mathrm{d}y}$$

and this is independent of dx, dy if and only if

$$(u_x + \mathrm{i}\,v_x) = (v_y - \mathrm{i}\,u_y)$$

which are equations (5).

Theorem 1.2. If f is holomorphic and f'(z) = 0 then $df \equiv 0$ and f is locally constant.

Proof. Since f = u + iv is holomorphic we have $\frac{\partial f}{\partial z} = 0$ and $f'(z) \equiv 0$ is equivalent to $\frac{\partial f}{\partial z} = 0$. Then by equation 2 we get $df \equiv 0$. This means that the functions u, v are locally constant. \Box

Mathematical Methods, L2

Interpretations of the CR conditions and harmonic functions

The differential df is related to the Jacobian matrix as follows

$$df = J_f \begin{pmatrix} dx \\ dy \end{pmatrix} = \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix} \begin{pmatrix} dx \\ dy \end{pmatrix}$$

Now if f is holomorphic the Cauchy-Riemann's equations are:

$$\begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix} = \begin{pmatrix} u_x & -v_x \\ v_x & u_x \end{pmatrix}$$

Which means that the Jacobian matrix is given by multiplication against the complex number $u_x + i v_x$. Namely, J_f is the 2 × 2 matrix associated to the multiplication by $u_x + i v_x$.

From the geometric interpretation of the multiplication by complex numbers we get that near z_0 if $f'(z_0) \neq 0$ the behavior of f is like a rotation followed by an expansion. In particular a point where $f'(z_0)$ can not be a minimum or a maximum of |f(z)|.

Here is another interpretation of Cauchy-Riemann's equations. Let us write the gradient ∇u as a complex number

$$\nabla u = u_x + \mathrm{i}\,u_y$$

Then the gradient $\nabla v = v_x + i v_y$ is obtained from ∇u by a 90° counterclockwise. That is to say,

$$\nabla v = i \nabla u$$

In general if a vector field is a gradient then its 90° counterclockwise rotation is not a gradient.

Another easy but important observation is the harmonicity of the functions u, v. Namely, if f = u + i v is holomorphic then

$$\begin{cases} \Delta u = u_{xx} + u_{yy} = 0\\ \Delta v = v_{xx} + v_{yy} = 0 \end{cases}$$
(6)

Indeed, $u_{xx} = v_{yx} = v_{xy} = -u_{yy}$ and so $u_{xx} + u_{yy}$. But also notice that

$$\frac{\Delta}{4} = \frac{\partial}{\partial z}\frac{\partial}{\partial \overline{z}} = \left(\frac{1}{2}\frac{\partial}{\partial x} + \frac{1}{2i}\frac{\partial}{\partial y}\right)\left(\frac{1}{2}\frac{\partial}{\partial x} - \frac{1}{2i}\frac{\partial}{\partial y}\right) = \frac{\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}}{4}$$

Mathematical Methods, L2

Analytic functions.

A complex function f is called *analytic* if around each point z_0 of its domain the function f can be computed by a convergent power series. More precisely, for each z_0 there exists $\epsilon > 0$ and a sequence of complex numbers (a_0, a_1, \cdots) such that

$$f(z) = a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \dots = \sum_{k=0}^{\infty} a_k(z - z_0)^k$$
(7)

for $|z - z_0| < \epsilon$.

If f is analytic then f and all its derivatives are holomorphic. The derivatives can be computed as the derivatives of a convergent power series, i.e. by deriving term by term. In particular,

$$f^{(n)}(z_0) = \frac{a_n}{n!}$$

which shows that the expression of f as a power series at z_0 is unique.

If the power series (7) is convergent for all $z \in \mathbb{C}$, i.e. not just for $|z - z_0| < \epsilon$, the function f is called entire function.

An important example of entire function is the exponential e^z defined by the power series:

$$e^{z} = 1 + z + \frac{z^{2}}{2} + \dots = \sum_{k=0}^{\infty} \frac{z^{k}}{k!}$$

Notice that the derivative of e^z is itself.

A simple computation shows the Euler's formula

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

for $\theta \in \mathbb{R}$.

The geometric series

$$g(z) = 1 + z + z^2 + z^3 + \cdots$$

is convergent for |z| < 1 and so g(z) is holomorphic. If |z| < 1 then

$$(1-z)g(z) = 1 + z + z^2 + \dots - z - z^2 - \dots = 1$$

Mathematical Methods, L2

6

MM Vercelli.

 \mathbf{SO}

$$g(z) = \frac{1}{1-z} \,.$$

The series

$$G(z) = z + \frac{z^2}{2} + \frac{z^3}{3} + \frac{z^4}{4} + \cdots$$

is also convergent for |z| < 1 and G'(z) = g(z).

Notice that $(1-z)e^{G(z)} = 1$ for all |z| < 1. So G(z) can be regarded as the logarithm of $\frac{1}{1-z}$.