L2: Holomorphic and analytic functions.

Contents:

- Holomorphic functions.
- Cauchy-Riemann conditions.
- Complex differentials and complex partial derivatives.
- Analytic functions.
- The exponential function.

1 Holomorphic functions

A complex function $f(x, y)=u(x, y)+\mathrm{i} v(x, y)$ can be also regarded as a function of $z=x+\mathrm{i} y$ and its conjugated \bar{z} because we can write

$$
f\left(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2 \mathrm{i}}\right)=u\left(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2 \mathrm{i}}\right)+\mathrm{i} v\left(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2 \mathrm{i}}\right)
$$

Classically a holomorphic function f was defined as a function f such that the expression $u\left(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2 \mathrm{i}}\right)+\mathrm{i} v\left(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2 \mathrm{i}}\right)$ does not contain, after simplification, the letter \bar{z} or what is the same f does not depend upon \bar{z}.

It is standard to denote $\mathcal{O}(D)$ the set of holomorphic functions on D.
From calculus we know that a given function f do not depends on a variable, say w if the partial derivative $\frac{\partial f}{\partial w}$ is identically zero.

So a simpler way of saying that a function f does not depend on \bar{z} is as follows:

$$
\begin{equation*}
\frac{\partial f}{\partial \bar{z}}=0 \tag{1}
\end{equation*}
$$

The problem is that we have no definition of the partial derivative with respect to \bar{z}.

Example 1.1. Any polynomial $f(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}$ gives an holomorphic function. Moreover, a convergent power series $f(z)=\sum_{k=0}^{\infty} c_{k} z^{k}$ gives a holomorphic function in his disc of convergence. The function $f(x, y)=x^{2}+y^{2}$ is not holomorphic. Why?

To give a meaning of the partial derivatives $\frac{\partial f}{\partial \bar{z}}$ and $\frac{\partial f}{\partial z}$ we assume that such partial derivatives do exists and try to find their definition as follows:

$$
\begin{equation*}
\mathrm{d} f=\frac{\partial f}{\partial x} \mathrm{~d} x+\frac{\partial f}{\partial y} \mathrm{~d} y=\frac{\partial f}{\partial z} \mathrm{~d} z+\frac{\partial f}{\partial \bar{z}} \mathrm{~d} \bar{z} \tag{2}
\end{equation*}
$$

and since $x=\frac{z+\bar{z}}{2}$ and $y=\frac{z-\bar{z}}{2 \mathrm{i}}$ we get

$$
\begin{aligned}
& \mathrm{d} x=\frac{\mathrm{d} z+\mathrm{d} \bar{z}}{2} \\
& \mathrm{~d} y=\frac{\mathrm{d} z-\mathrm{d} \bar{z}}{2 \mathrm{i}}
\end{aligned}
$$

so we get

$$
\begin{aligned}
\mathrm{d} f & =\frac{\partial f}{\partial x} \mathrm{~d} x+\frac{\partial f}{\partial y} \mathrm{~d} y \\
& =\frac{\partial f}{\partial x}\left(\frac{\mathrm{~d} z+\mathrm{d} \bar{z}}{2}\right)+\frac{\partial f}{\partial y}\left(\frac{\mathrm{~d} z-\mathrm{d} \bar{z}}{2 \mathrm{i}}\right) \\
& =\left(\frac{1}{2} \frac{\partial f}{\partial x}+\frac{1}{2 \mathrm{i}} \frac{\partial f}{\partial y}\right) \mathrm{d} z+\left(\frac{1}{2} \frac{\partial f}{\partial x}-\frac{1}{2 \mathrm{i}} \frac{\partial f}{\partial y}\right) \mathrm{d} \bar{z} .
\end{aligned}
$$

Then we give the following definition of the complex partial derivatives:

$$
\left\{\begin{array}{l}
\frac{\partial f}{\partial z}:=\frac{1}{2} \frac{\partial f}{\partial x}+\frac{1}{2 \mathrm{i}} \frac{\partial f}{\partial y} \\
\frac{\partial f}{\partial \bar{z}}:=\frac{1}{2} \frac{\partial f}{\partial x}-\frac{1}{2 \mathrm{i}} \frac{\partial f}{\partial y}
\end{array}\right.
$$

If f is differentiable ${ }^{1}$ we get

$$
\begin{equation*}
\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}=\frac{\frac{\partial f}{\partial z} \cdot\left(z-z_{0}\right)+\frac{\partial f}{\partial \bar{z}} \overline{\left(z-z_{0}\right)}+o\left(\left|z-z_{0}\right|\right)}{z-z_{0}} \tag{3}
\end{equation*}
$$

Thus, we get that $\frac{\partial f}{\partial \bar{z}}=0$ if and only if the Newton's quotient has a limit. Namely,

$$
\begin{equation*}
\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}=f^{\prime}\left(z_{0}\right)=\frac{\partial f}{\partial z}\left(z_{0}\right) \tag{4}
\end{equation*}
$$

Indeed, since $\frac{\partial f}{\partial z}=0$ we get equation (4) when $z \rightarrow z_{0}$ from equation 3 and viceversa since the limit of the quotient

$$
\frac{\bar{z}}{z}
$$

[^0]does not exist when $z \rightarrow 0$.

1.1 Chain rule

Here is simple consequence of (2). Assume that $f \in \mathcal{O}(D)$ and that $\mathrm{z}:[a, b] \rightarrow D$ is a curve, i.e. $\mathrm{z}(t)=x(t)+\mathrm{i} y(t)$. Then,

$$
\frac{\mathrm{d} f(\mathrm{z}(t))}{\mathrm{d} t}=f^{\prime}(\mathrm{z}(t)) \cdot \mathrm{z}^{\prime}(t)
$$

Cauchy-Riemann's conditions

We can define f to be holomorphic if either the limit (4) do exists or equivalently if $\frac{\partial f}{\partial \bar{z}}=0$.

Now assume that f is holomorphic. Then $\frac{\partial f}{\partial \bar{z}}=0$. We can write this condition in terms of the partial derivatives of the functions u, v as follows:

$$
\begin{aligned}
\frac{\partial f}{\partial \bar{z}} & =\frac{\partial u+\mathrm{i} v}{\partial \bar{z}} \\
& =\frac{\partial u}{\partial \bar{z}}+\frac{\partial \mathrm{i} v}{\partial \bar{z}} \\
& =\frac{1}{2} \frac{\partial u}{\partial x}-\frac{1}{2 \mathrm{i}} \frac{\partial u}{\partial y}+\frac{1}{2} \frac{\partial \mathrm{i} v}{\partial x}-\frac{1}{2 \mathrm{i}} \frac{\partial \mathrm{i} v}{\partial y} \\
& =\left(\frac{1}{2} \frac{\partial u}{\partial x}-\frac{1}{2} \frac{\partial v}{\partial y}\right)+\mathrm{i}\left(\frac{1}{2} \frac{\partial v}{\partial x}+\frac{1}{2} \frac{\partial u}{\partial y}\right)
\end{aligned}
$$

and we obtain the famous Cauchy-Riemann's conditions for a holomorphic function $f=u+\mathrm{i} v$

$$
\left\{\begin{array}{l}
u_{x}=v_{y} \tag{5}\\
u_{y}=-v_{x}
\end{array}\right.
$$

Here is how Riemann originally found the above equations.
By equation (4) the quotient

$$
\frac{\mathrm{d} u+\mathrm{i} \mathrm{~d} v}{\mathrm{~d} x+\mathrm{i} \mathrm{~d} y}
$$

is well defined, i.e. independent of $\mathrm{d} x, \mathrm{~d} y$. So computing the differential in the numerator we have

$$
\frac{\left(u_{x}+\mathrm{i} v_{x}\right) \mathrm{d} x+\left(v_{y}-\mathrm{i} u_{y}\right) \mathrm{i} \mathrm{~d} y}{\mathrm{~d} x+\mathrm{i} \mathrm{~d} y}
$$

and this is independent of $\mathrm{d} x, \mathrm{~d} y$ if and only if

$$
\left(u_{x}+\mathrm{i} v_{x}\right)=\left(v_{y}-\mathrm{i} u_{y}\right)
$$

which are equations (5).
Theorem 1.2. If f is holomorphic and $f^{\prime}(z)=0$ then $d f \equiv 0$ and f is locally constant.
Proof. Since $f=u+\mathrm{i} v$ is holomorphic we have $\frac{\partial f}{\partial \bar{z}}=0$ and $f^{\prime}(z) \equiv 0$ is equivalent to $\frac{\partial f}{\partial z}=0$. Then by equation 2 we get $\mathrm{d} f \equiv 0$. This means that the functions u, v are locally constant.

Interpretations of the CR conditions and harmonic functions

The differential $\mathrm{d} f$ is related to the Jacobian matrix as follows

$$
\mathrm{d} f=J_{f}\binom{\mathrm{~d} x}{\mathrm{~d} y}=\left(\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right)\binom{\mathrm{d} x}{\mathrm{~d} y}
$$

Now if f is holomorphic the Cauchy-Riemann's equations are:

$$
\left(\begin{array}{cc}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right)=\left(\begin{array}{cc}
u_{x} & -v_{x} \\
v_{x} & u_{x}
\end{array}\right)
$$

Which means that the Jacobian matrix is given by multiplication against the complex number $u_{x}+\mathrm{i} v_{x}$. Namely, J_{f} is the 2×2 matrix associated to the multiplication by $u_{x}+\mathrm{i} v_{x}$.

From the geometric interpretation of the multiplication by complex numbers we get that near z_{0} if $f^{\prime}\left(z_{0}\right) \neq 0$ the behavior of f is like a rotation followed by an expansion. In particular a point where $f^{\prime}\left(z_{0}\right)$ can not be a minimum or a maximum of $|f(z)|$.

Here is another interpretation of Cauchy-Riemann's equations. Let us write the gradient ∇u as a complex number

$$
\nabla u=u_{x}+\mathrm{i} u_{y}
$$

Then the gradient $\nabla v=v_{x}+\mathrm{i} v_{y}$ is obtained from ∇u by a 90° counterclockwise. That is to say,

$$
\nabla v=\mathrm{i} \nabla u
$$

In general if a vector field is a gradient then its 90° counterclockwise rotation is not a gradient.

Another easy but important observation is the harmonicity of the functions u, v. Namely, if $f=u+\mathrm{i} v$ is holomorphic then

$$
\left\{\begin{array}{l}
\Delta u=u_{x x}+u_{y y}=0 \tag{6}\\
\Delta v=v_{x x}+v_{y y}=0
\end{array}\right.
$$

Indeed, $u_{x x}=v_{y x}=v_{x y}=-u_{y y}$ and so $u_{x x}+u_{y y}$. But also notice that

$$
\frac{\Delta}{4}=\frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}}=\left(\frac{1}{2} \frac{\partial}{\partial x}+\frac{1}{2 \mathrm{i}} \frac{\partial}{\partial y}\right)\left(\frac{1}{2} \frac{\partial}{\partial x}-\frac{1}{2 \mathrm{i}} \frac{\partial}{\partial y}\right)=\frac{\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}}{4}
$$

Analytic functions.

A complex function f is called analytic if around each point z_{0} of its domain the function f can be computed by a convergent power series. More precisely, for each z_{0} there exists $\epsilon>0$ and a sequence of complex numbers $\left(a_{0}, a_{1}, \cdots\right)$ such that

$$
\begin{equation*}
f(z)=a_{0}+a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+\cdots=\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k} \tag{7}
\end{equation*}
$$

for $\left|z-z_{0}\right|<\epsilon$.
If f is analytic then f and all its derivatives are holomorphic. The derivatives can be computed as the derivatives of a convergent power series,i.e. by deriving term by term. In particular,

$$
f^{(n)}\left(z_{0}\right)=\frac{a_{n}}{n!}
$$

which shows that the expression of f as a power series at z_{0} is unique.
If the power series (7) is convergent for all $z \in \mathbb{C}$, i.e. not just for $\left|z-z_{0}\right|<\epsilon$, the function f is called entire function.

An important example of entire function is the exponential e^{z} defined by the power series:

$$
e^{z}=1+z+\frac{z^{2}}{2}+\cdots=\sum_{k=0}^{\infty} \frac{z^{k}}{k!} .
$$

Notice that the derivative of e^{z} is itself.
A simple computation shows the Euler's formula

$$
e^{\mathrm{i} \theta}=\cos (\theta)+\mathrm{i} \sin (\theta)
$$

for $\theta \in \mathbb{R}$.
The geometric series

$$
g(z)=1+z+z^{2}+z^{3}+\cdots
$$

is convergent for $|z|<1$ and so $g(z)$ is holomorphic. If $|z|<1$ then

$$
(1-z) g(z)=1+z+z^{2}+\cdots-z-z^{2}-\cdots=1
$$

so

$$
g(z)=\frac{1}{1-z} .
$$

The series

$$
G(z)=z+\frac{z^{2}}{2}+\frac{z^{3}}{3}+\frac{z^{4}}{4}+\cdots
$$

is also convergent for $|z|<1$ and $G^{\prime}(z)=g(z)$.
Notice that $(1-z) e^{G(z)}=1$ for all $|z|<1$. So $G(z)$ can be regarded as the logarithm of $\frac{1}{1-z}$.

[^0]: ${ }^{1}$ For example if the partial derivatives of u, v are continuous functions.

