Definition and Examples of Groups

Definition 21.1. A group is a nonempty set G equipped with a binary operation $*: G \times G \rightarrow G$ satisfying the following axioms: $\imath(i)$ Closure: if $a, b \in G$, then $a * b \in G$. \imath (ii) Associativity: $a *(b * c)=(a * b) * c$ for all $a, b, c \in G$. »(iii) Identity: there is an element $e \in G$, such that $a * e=e * a=a$ for all $a \in G$. \imath (iv) Inverse: for each element $a \in G$, there is an element $b \in G$ such that $a * b=e=b * a$.

Definition 21.2. A group G is said to be abelian (or commutative) if $a * b=b * a$ for all $a, b \in G$.

Examples:

1. \mathbb{Z} is an abelian group under addition.
2. $\mathbb{R}-0$ is an abelian group under multiplication.
3. $M_{2}(\mathbb{R})$ is an abelian group under the addition of matrices.
4. The set

$$
G L(2)=\left\{M \in M_{2}(\mathbb{R}) \mid \operatorname{det} M \neq 0\right\}
$$

is a non-commutative group under matrix multiplication.
5. Every ring is abelian group under addition.
6. Every division ring is a group under multiplication.
7. Every field is a abelian group under multiplication.
8. The set of bijections f from a set S onto itself is a group.
9. Permutation Groups.

Let $T=\{1,2,3\}$ and consider the six possible permutations of the elements of T.

$$
P_{3}=\{(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)\}
$$

To each element $(i, j, k) \in P_{3}$ of S_{3} there corresponds a map $\sigma_{i j k}: P \rightarrow P$ defined as follows; $\sigma_{i j k}$ maps any $(a, b, c) \in P$ to the element of P for which a is the $i^{t h}$ component, b is the $j^{t h}$ component, and c is the $k^{\text {th }}$ component

$$
\begin{aligned}
\left(\sigma_{i j k}(a, b, c)\right)_{i} & =a \\
\left(\sigma_{i j k}(a, b, c)\right)_{j} & =b \\
\left(\sigma_{i j k}(a, b, c)\right)_{k} & =c
\end{aligned}
$$

Since $i \neq j \neq k$ we easily conclude that these maps are bijective. In fact, every bijection from T to T must correspond to a $\sigma_{i j k}$ for some $(i, j, k) \in S_{3}$. Since the composition of any two bijective functions is itself bijective the set of maps

$$
S_{3}=\left\{\sigma_{i j k} \mid(i, j, k) \in P_{3}\right\}
$$

is closed under functional composition. Note also that the function σ_{123} acts like an identity transformation with respect to functional composition; i.e.,

$$
\left(\sigma_{i j k} \circ \sigma_{123}\right)(1,2,3)=\sigma_{i j k}(1,2,3)
$$

and

$$
\left(\sigma_{123} \circ \sigma_{i j k}\right)(1,2,3)=\sigma_{123}(i, j, k)=(i, j, k)=\sigma_{i j k}(1,2,3)
$$

and so

$$
\sigma_{123} \circ \sigma_{i j k}=\sigma_{i j k}=\sigma_{i j k} \circ \sigma_{123} \quad, \quad \forall \sigma_{i j k} \in S_{3}
$$

Note also that because element of S_{3} is a bijection from T to T, and every bijection from T to T can be regarded as an element of T, every element of S_{3} has an inverse in S_{3}. Finally, we note that the composition of maps is associative. We have thus verified that the set S_{3} has the structure of a group when the group composition law is defined as the composition of functions.

Consider the composition of $\sigma_{213} \circ \sigma_{312}$, we have

$$
\left(\sigma_{213} \circ \sigma_{312}\right)(1,2,3)=\sigma_{213}(2,3,1)=(3,2,1)
$$

Thus,

$$
\sigma_{213} \circ \sigma_{312}=\sigma_{132}
$$

Now consider the composition in the opposite order

$$
\left(\sigma_{312} \circ \sigma_{213}\right)(1,2,3)=\sigma_{312}(2,1,3)=(1,3,2)
$$

so

$$
\sigma_{312} \circ \sigma_{213}=\sigma_{132}
$$

This example generalizes as follows. Let n be a fixed positive integer and let T be the set $\{1,2,3, \ldots, n\}$, and let S_{n} denote the set of all bijective maps from T to T. Each element $\sigma \in S$ sends a given $i \in T$ to an element $\sigma(i) \in T$.
9. Symmetry Groups of Regular Polygons
D_{4} is the group of all rotations and reflections of a square such that the image of the transformation lies over original square. D_{4} consists of rotations of $0,90,180$ and 270 degrees, and reflections across the x-axix, the y-axis, the line $y=x$, and the line $y=-x$.

More generally, D_{n} is the group of symmetries of a regular polygon with n sides.

Example

The group D_{3} is the set of all symmetries of an equilateral triangle. It consists of rotations of 0,120 , and 240 degrees, and reflections about the perpendicular bisectors of each side. D_{3} thus consists of 6 elements.

Definition 21.3. A group G is said to be finite if it has only a finite number of elements. If G is finite, then the number of elements of G is called the order of G and is denoted $|G|$.

Remark: each of the rings \mathbb{Z}_{n} is a finite commutative group under addition.

Example

Let U_{n} denote the set of units in \mathbb{Z}_{n}; i.e.,

$$
U_{n}=\left\{a \in Z_{n} \mid \exists b \in Z_{n} \text { s.t. } a b=[1]_{n}\right\}
$$

Then U_{n} is a finite commutative group under multiplication. According to Corollary 2.9, U_{n} consists of all $a \in Z_{n}$ such that $G C D(a, n)=1$. Thus, for example, the group of units in \mathbb{Z}_{8} is

$$
U_{n}=\{1,3,5,7\}
$$

Theorem 21.4. The G and H be groups. Define an operation * on the Cartesian product $G \times H$ by

$$
(g, h) *\left(g^{\prime}, h^{\prime}\right)=\left(g * g^{\prime}, h * h^{\prime}\right)
$$

Then $G \times H$ is a group. If G and H are abelian, then so is $G \times H$. If G and H are finite, then so is $G \times H$, and $|G \times H|=|G||H|$.

