$\oint 3$ Isomorphic Binary Structures

$$
2-8,16-18,26,27
$$

2. $<\mathcal{Z},+>$ with $<\mathcal{Z},+>$ where $\phi(n)=-n$ for $n \in \mathcal{Z}$. YES $\phi(a+b)=-a-b$ and $\phi(a)+\phi(b)=-a-b$
3. $<\mathcal{Z},+>$ with $<\mathcal{Z},+>$ where $\phi(n)=2 n$ for $n \in \mathcal{Z}$. NO ϕ is not onto \mathcal{Z}. There is no $n \in \mathcal{Z} \ni \phi(n)=1 \in Z^{\prime}$.
4. $<\mathcal{Z},+>$ with $<\mathcal{Z},+>$ where $\phi(n)=n+1$ for $n \in \mathcal{Z}$. NO $\phi(a+b)=a+b+1$ but $\phi(a)+\phi(b)=a+b+2$
5. $<\mathcal{Q},+>$ with $<\mathcal{Q},+>$ where $\phi(x)=\frac{x}{2}$ for $x \in \mathcal{Q}$. YES
$\phi(a+b)=\frac{a+b}{2}$ and $\phi(a)+\phi(b)=\frac{a}{2}+\frac{b}{2}$
6. $<\mathcal{Q}, \cdot>$ with $<\mathcal{Q}, \cdot>$ where $\phi(x)=x^{2}$ for $x \in \mathcal{Q}$. NO

Not $1-1: \phi(a)=\phi(-a)$ but $a \neq-a$
7. $<\mathcal{R}, \cdot>$ with $<\mathcal{R}, \cdot>$ where $\phi(x)=x^{3}$ for $x \in \mathcal{R}$. YES $\phi(a b)=(a b)^{3}$ and $\phi(a) \cdot \phi(b)=a^{3} \cdot b^{3}=(a b)^{3}$
8. $<M_{2}(\mathcal{R}), \cdot>$ with $<\mathcal{R}, \cdot>$ where $\phi(A)$ is the determinant of the matrix A. NO Not $1-1$.

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \quad B=\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right] \quad|A|=|B| \text { but } A \neq B
$$

16. The map $\phi: \mathcal{Z} \rightarrow \mathcal{Z}$ defined by $\phi(n)=n+1$ for $n \in \mathcal{Z}$ is one to one and onto \mathcal{Z}. Give the definition of a binary operation $*$ on \mathcal{Z} such that ϕ is an isomorphism mapping.
a. $\langle\mathcal{Z},+>$ onto $<\mathcal{Z}, *>$

For ϕ to be an isomorphism, we must have
$m * n=\phi(m-1) * \phi(n-1)=\phi((m-1)+(n-1))=\phi(m+n-2)=m+n-1$.
The identity element $\phi(0)=1$.
b. $<\mathcal{Z}, *>$ onto $<\mathcal{Z},+>$

Using the fact that ϕ^{-1} is an isomorphism, we must have
$m * n=\phi^{-1}(m+1) * \phi^{-1}(n+1)=\phi^{-1}((m+1)+(n+1))=\phi^{-1}(m+n+2)=m+n+1$.
The identity element is $\phi^{-1}(0)=-1$.
17. The map $\phi: \mathcal{Z} \rightarrow \mathcal{Z}$ defined by $\phi(n)=n+1$ for $n \in \mathcal{Z}$ is one to one and onto \mathcal{Z}. Give the definition of a binary operation $*$ on \mathcal{Z} such that ϕ is an isomorphism mapping.
a. $\langle\mathcal{Z}, \cdot\rangle$ onto $<\mathcal{Z}, *\rangle$

For ϕ to be an isomorphism, we must have
$m * n=\phi(m-1) * \phi(n-1)=\phi((m-1) \cdot(n-1))=\phi(m n-m-n+1)=m n-m-n+2$.
The identity element is $\phi(1)=2$.
b. $\langle\mathcal{Z}, *\rangle$ onto $\langle\mathcal{Z}, \cdot\rangle$

Using the fact that ϕ^{-1} must also be an isomorphism, we must have
$m * n=\phi^{-1}(m+1) * \phi^{-1}(n+1)=\phi^{-1}((m+1) \cdot(n+1))=\phi^{-1}(m n+m+n+1)=m n+m+n$.
The identity element is $\phi^{-1}(1)=0$.
18. The $\operatorname{map} \phi: \mathcal{Q} \rightarrow \mathcal{Q}$ defined by $\phi(x)=3 x-1$ for $x \in \mathcal{Q}$ is one to one and onto \mathcal{Q}. Give the definition of a binary operation $*$ on \mathcal{Q} such that ϕ is an isomorphism mapping.
a. $\langle\mathcal{Q},+>$ onto $<\mathcal{Q}, *>$

For ϕ to be an isomorphism, we must have
$a * b=\phi\left(\frac{a+1}{3}\right) * \phi\left(\frac{b+1}{3}\right)=\phi\left(\frac{a+1}{3}+\frac{b+1}{3}\right)=\phi\left(\frac{a+b+2}{3}\right)=a+b+1$.
The identity element is $\phi(0)=-1$.
b. $<\mathcal{Q}, *>$ onto $<\mathcal{Q},+>$

Using the fact that ϕ^{-1} must also be an isomorphism, we must have
$a * b=\phi^{-1}(3 a-1) * \phi^{-1}(3 b-1)=\phi^{-1}((3 a-1)+(3 b-1))=\phi^{-1}(3 a+3 b-2)=a+b-\frac{1}{3}$.
The identity element is $\phi^{-1}(0)=\frac{1}{3}$.
26. Since f is a bijection, f^{-1} is a bijection also. It needs only to be shown that f^{-1} is a homomorphism.
Since f is a homomorphism, we know for $a, b \in S, f(a)=x$ and $f(b)=y$ for $x, y \in S^{\prime}$. We also know that $f(a * b)=f(a) *^{\prime} f(b)$.
We want to show that $f^{-1}\left(x *^{\prime} y\right)=f^{-1}(x) * f^{-1}(y)$.
Consider the following:

$$
\begin{aligned}
f^{-1}\left(x *^{\prime} y\right) & =f^{-1}\left(f(a) *^{\prime} f(b)\right) \\
& =f^{-1}(f(a * b)) \\
& =a * b \\
& =f^{-1}(f(a)) * f^{-1}(f(b)) \\
& =f^{-1}(x) * f^{-1}(y)
\end{aligned}
$$

A second way to go:
1-1: Suppose $\phi^{-1}\left(a^{\prime}\right)=\phi^{-1}\left(b^{\prime}\right)$ for all $a^{\prime}, b^{\prime} \in S^{\prime}$. Then $a^{\prime}=\phi\left(\phi^{-1}\left(a^{\prime}\right)\right)=\phi\left(\phi^{-1}\left(b^{\prime}\right)\right)=b^{\prime}$. So, ϕ^{-1} is 1-1.
Onto: Let $a \in S$. Then $\phi^{-1}(\phi(a))=a$, so ϕ^{-1} maps S^{\prime} onto S.
Homomorphism Property: Let $a^{\prime}, b^{\prime} \in S^{\prime}$. Now,

$$
\phi\left(\phi^{-1}\left(a^{\prime} *^{\prime} b^{\prime}\right)\right)=a^{\prime} *^{\prime} b^{\prime}
$$

Because ϕ is an isomorphism,

$$
\phi\left(\phi^{-1}\left(a^{\prime}\right) * \phi^{-1}\left(b^{\prime}\right)\right)=\phi\left(\phi^{-1}\left(a^{\prime}\right)\right) *^{\prime} \phi\left(\phi^{-1}\left(b^{\prime}\right)\right)=a^{\prime} *^{\prime} b^{\prime}
$$

also. Because ϕ is $1-1$, we can conclude that the operation is preserved.
27. Onto: We know there is a $y \in S^{\prime} \ni x \in S \Leftrightarrow \phi(x)=y$. We also know there is a $z \in S^{\prime \prime} \ni y \in$ $S^{\prime} \Leftrightarrow \psi(y)=z$. So, $\exists z \in S^{\prime \prime}$ and $x \in S \ni \psi(\phi(x))=z$.
$1-1$: For $x, y \in S, \phi(x)=\phi(y)$ only when $x=y$ and for $\phi(x), \phi(y) \in S^{\prime}, \psi(\phi(x))=\psi(\phi(y))$ only when $\phi(x)=\phi(y)$ which is only when $x=y$.
Homomorphism: We want to show $\psi(\phi(x * y))=\psi(\phi(x)) *^{\prime \prime} \psi(\phi(y))$.
$\psi(\phi(x * y))=\psi\left(\phi(x) *^{\prime} \phi(y)\right)=\psi(\phi(x)) *^{\prime \prime} \psi(\phi(y))$.

Another way to go:
1-1: Let $a, b \in S$ and suppose $(\psi \circ \phi)(a)=(\psi \circ \phi)(b)$. Then $(\psi(\phi(a))=(\psi(\phi(b))$. Because ψ is 1-1, we conclude that $\phi(a)=\phi(b)$. Because ϕ is 1-1, it must be so that $a=b$.
Onto: Let $a^{\prime \prime} \in S^{\prime \prime}$. Because ψ maps S^{\prime} onto $S^{\prime \prime}$, there exists $a^{\prime} \in S^{\prime}$ such that $\psi\left(a^{\prime}\right)=a^{\prime \prime}$. Because ψ maps S onto S^{\prime}, there exists $a \in S$ such that $\phi(a)=a^{\prime}$. Then, $(\psi \circ \phi)(a)=$ $\left(\psi(\phi(a))=\psi\left(a^{\prime}\right)=a^{\prime \prime}\right.$, so $\psi \circ \phi$ maps S onto $S^{\prime \prime}$.
Homomorphism: Let $a, b \in S$. Since ψ and ϕ are isomorphisms, $(\psi \circ \phi)(a * b)=\psi(\phi(a * b))=$ $\psi\left(\phi(a) *^{\prime} \phi(b)\right)=\psi(\phi(a)) *^{\prime \prime} \psi(\phi(b))$.

