\oint 3 Isomorphic Binary Structures

- 2. $\langle \mathcal{Z}, + \rangle$ with $\langle \mathcal{Z}, + \rangle$ where $\phi(n) = -n$ for $n \in \mathcal{Z}$. **YES** $\phi(a+b) = -a-b$ and $\phi(a) + \phi(b) = -a-b$
- 3. $\langle \mathcal{Z}, + \rangle$ with $\langle \mathcal{Z}, + \rangle$ where $\phi(n) = 2n$ for $n \in \mathcal{Z}$. NO ϕ is not onto \mathcal{Z} . There is no $n \in \mathcal{Z} \ni \phi(n) = 1 \in Z'$.
- 4. $\langle \mathcal{Z}, + \rangle$ with $\langle \mathcal{Z}, + \rangle$ where $\phi(n) = n + 1$ for $n \in \mathcal{Z}$. NO $\phi(a+b) = a+b+1$ but $\phi(a) + \phi(b) = a+b+2$
- 5. $\langle \mathcal{Q}, + \rangle$ with $\langle \mathcal{Q}, + \rangle$ where $\phi(x) = \frac{x}{2}$ for $x \in \mathcal{Q}$. **YES** $\phi(a+b) = \frac{a+b}{2}$ and $\phi(a) + \phi(b) = \frac{a}{2} + \frac{b}{2}$
- 6. $\langle \mathcal{Q}, \cdot \rangle$ with $\langle \mathcal{Q}, \cdot \rangle$ where $\phi(x) = x^2$ for $x \in \mathcal{Q}$. NO Not 1 - 1: $\phi(a) = \phi(-a)$ but $a \neq -a$
- 7. $\langle \mathcal{R}, \cdot \rangle$ with $\langle \mathcal{R}, \cdot \rangle$ where $\phi(x) = x^3$ for $x \in \mathcal{R}$. **YES** $\phi(ab) = (ab)^3$ and $\phi(a) \cdot \phi(b) = a^3 \cdot b^3 = (ab)^3$
- 8. $\langle M_2(\mathcal{R}), \cdot \rangle$ with $\langle \mathcal{R}, \cdot \rangle$ where $\phi(A)$ is the determinant of the matrix A. NO Not 1-1. $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \qquad |A| = |B| \text{ but } A \neq B.$
- 16. The map $\phi : \mathcal{Z} \to \mathcal{Z}$ defined by $\phi(n) = n + 1$ for $n \in \mathcal{Z}$ is one to one and onto \mathcal{Z} . Give the definition of a binary operation * on \mathcal{Z} such that ϕ is an isomorphism mapping.
 - a. $\langle \mathcal{Z}, + \rangle$ onto $\langle \mathcal{Z}, * \rangle$ For ϕ to be an isomorphism, we must have $m * n = \phi(m-1) * \phi(n-1) = \phi((m-1) + (n-1)) = \phi(m+n-2) = m+n-1.$ The identity element $\phi(0) = 1$.
 - b. $\langle \mathcal{Z}, * \rangle$ onto $\langle \mathcal{Z}, + \rangle$ Using the fact that ϕ^{-1} is an isomorphism, we must have $m * n = \phi^{-1}(m+1) * \phi^{-1}(n+1) = \phi^{-1}((m+1) + (n+1)) = \phi^{-1}(m+n+2) = m+n+1$. The identity element is $\phi^{-1}(0) = -1$.
- 17. The map $\phi : \mathcal{Z} \to \mathcal{Z}$ defined by $\phi(n) = n + 1$ for $n \in \mathcal{Z}$ is one to one and onto \mathcal{Z} . Give the definition of a binary operation * on \mathcal{Z} such that ϕ is an isomorphism mapping.
 - a. $\langle \mathcal{Z}, \cdot \rangle$ onto $\langle \mathcal{Z}, * \rangle$ For ϕ to be an isomorphism, we must have $m * n = \phi(m-1) * \phi(n-1) = \phi((m-1) \cdot (n-1)) = \phi(mn-m-n+1) = mn-m-n+2.$ The identity element is $\phi(1) = 2$.
 - b. $\langle \mathcal{Z}, * \rangle$ onto $\langle \mathcal{Z}, \cdot \rangle$ Using the fact that ϕ^{-1} must also be an isomorphism, we must have $m*n = \phi^{-1}(m+1)*\phi^{-1}(n+1) = \phi^{-1}((m+1)\cdot(n+1)) = \phi^{-1}(mn+m+n+1) = mn+m+n$. The identity element is $\phi^{-1}(1) = 0$.

- 18. The map $\phi : \mathcal{Q} \to \mathcal{Q}$ defined by $\phi(x) = 3x 1$ for $x \in \mathcal{Q}$ is one to one and onto \mathcal{Q} . Give the definition of a binary operation * on \mathcal{Q} such that ϕ is an isomorphism mapping.
 - a. $\langle \mathcal{Q}, + \rangle$ onto $\langle \mathcal{Q}, * \rangle$ For ϕ to be an isomorphism, we must have $a * b = \phi\left(\frac{a+1}{3}\right) * \phi\left(\frac{b+1}{3}\right) = \phi\left(\frac{a+1}{3} + \frac{b+1}{3}\right) = \phi\left(\frac{a+b+2}{3}\right) = a + b + 1.$ The identity element is $\phi(0) = -1$.
 - b. $\langle \mathcal{Q}, * \rangle$ onto $\langle \mathcal{Q}, + \rangle$ Using the fact that ϕ^{-1} must also be an isomorphism, we must have $a * b = \phi^{-1}(3a-1) * \phi^{-1}(3b-1) = \phi^{-1}((3a-1)+(3b-1)) = \phi^{-1}(3a+3b-2) = a+b-\frac{1}{3}$. The identity element is $\phi^{-1}(0) = \frac{1}{3}$.
- 26. Since f is a bijection, f^{-1} is a bijection also. It needs only to be shown that f^{-1} is a homomorphism.

Since f is a homomorphism, we know for $a, b \in S$, f(a) = x and f(b) = y for $x, y \in S'$. We also know that f(a * b) = f(a) *' f(b). We want to show that $f^{-1}(x *' y) = f^{-1}(x) * f^{-1}(y)$.

Consider the following:

$$\begin{aligned} f^{-1}(x *' y) &= f^{-1}(f(a) *' f(b)) \\ &= f^{-1}(f(a * b)) \\ &= a * b \\ &= f^{-1}(f(a)) * f^{-1}(f(b)) \\ &= f^{-1}(x) * f^{-1}(y) \end{aligned}$$

A second way to go: 1-1: Suppose $\phi^{-1}(a') = \phi^{-1}(b')$ for all $a', b' \in S'$. Then $a' = \phi(\phi^{-1}(a')) = \phi(\phi^{-1}(b')) = b'$. So, ϕ^{-1} is 1-1. Onto: Let $a \in S$. Then $\phi^{-1}(\phi(a)) = a$, so ϕ^{-1} maps S' onto S. Homomorphism Property: Let $a', b' \in S'$. Now,

$$\phi(\phi^{-1}(a' *' b')) = a' *' b'$$

Because ϕ is an isomorphism,

$$\phi(\phi^{-1}(a') * \phi^{-1}(b')) = \phi(\phi^{-1}(a')) *' \phi(\phi^{-1}(b')) = a' *' b'$$

also. Because ϕ is 1-1, we can conclude that the operation is preserved.

27. Onto: We know there is a $y \in S' \ni x \in S \Leftrightarrow \phi(x) = y$. We also know there is a $z \in S'' \ni y \in S' \Leftrightarrow \psi(y) = z$. So, $\exists z \in S''$ and $x \in S \ni \psi(\phi(x)) = z$. 1 - 1: For $x, y \in S$, $\phi(x) = \phi(y)$ only when x = y and for $\phi(x), \phi(y) \in S', \psi(\phi(x)) = \psi(\phi(y))$ only when $\phi(x) = \phi(y)$ which is only when x = y. *Homomorphism*: We want to show $\psi(\phi(x * y)) = \psi(\phi(x)) *'' \psi(\phi(y))$. $\psi(\phi(x * y)) = \psi(\phi(x) *' \phi(y)) = \psi(\phi(x)) *'' \psi(\phi(y))$. Another way to go:

1-1: Let $a, b \in S$ and suppose $(\psi \circ \phi)(a) = (\psi \circ \phi)(b)$. Then $(\psi(\phi(a))) = (\psi(\phi(b)))$. Because ψ is 1-1, we conclude that $\phi(a) = \phi(b)$. Because ϕ is 1-1, it must be so that a = b.

Onto: Let $a'' \in S''$. Because ψ maps S' onto S'', there exists $a' \in S'$ such that $\psi(a') = a''$. Because ψ maps S onto S', there exists $a \in S$ such that $\phi(a) = a'$. Then, $(\psi \circ \phi)(a) = (\psi(\phi(a))) = \psi(a') = a''$, so $\psi \circ \phi$ maps S onto S''.

Homomorphism: Let $a, b \in S$. Since ψ and ϕ are isomorphisms, $(\psi \circ \phi)(a * b) = \psi(\phi(a * b)) = \psi(\phi(a) *' \phi(b)) = \psi(\phi(a)) *'' \psi(\phi(b))$.