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3.2 Limits and Continuity of Functions of Two
or More Variables.

3.2.1 Elementary Notions of Limits

We wish to extend the notion of limits studied in Calculus I. Recall that when
we write lim

x→a
f (x) = L, we mean that f can be made as close as we want to

L, by taking x close enough to a but not equal to a. In this process, f has to
be defined near a, but not necessarily at a. The information we are trying to
derive is the behavior of f (x) as x gets closer to a.
When we extend this notion to functions of two variables (or more), we will

see that there are many similarities. We will discuss these similarities. However,
there is also a main difference. The domain of functions of two variables is a
subset of R2, in other words it is a set of pairs. A point in R2 is of the form
(x, y). So, the equivalent of x → a will be (x, y) → (a, b). For functions of
three variables, the equivalent of x → a will be (x, y, z) → (a, b, c), and so on.
This has a very important consequence, one which makes computing limits for
functions of several variables more diffi cult. While x could only approach a from
two directions, from the left or from the right, (x, y) can approach (a, b) from
infinitely many directions. In fact, it does not even have to approach (a, b) along
a straight path as shown in figure 3.7. With functions of one variable, one way
to show a limit existed, was to show that the limit from both directions existed
and were equal ( lim

x→a−
f (x) = lim

x→a+
f (x)). Equivalently, when the limits from

the two directions were not equal, we concluded that the limit did not exist.
For functions of several variables, we would have to show that the limit along
every possible path exist and are the same. The problem is that there are
infinitely many such paths. To show a limit does not exist, it is still enough to
find two paths along which the limits are not equal. In view of the number of
possible paths, it is not always easy to know which paths to try. We give some
suggestions here. You can try the following paths:

1. Horizontal line through (a, b), the equation of such a path is y = b.

2. Vertical line through (a, b), the equation of such a path is x = a.

3. Any straight line through (a, b) ,the equation of the line with slope m
through (a, b) is y = mx+ b− am.

4. Quadratic paths. For example, a typical quadratic path through (0, 0) is
y = x2.

We will show how to compute limits along a path in the next sections.
While it is important to know how to compute limits, it is also important to

understand what we are trying to accomplish. Like for functions of one variable,
when we compute the limit of a function of several variables at a point, we are
simply trying to study the behavior of that function near that point. The
questions we are trying to answer are:
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Figure 3.7: Possible paths through (a, b)

1. Does the function behave "nicely" near the point in questions? In other
words, does the function seem to be approaching a single value as its input
is approaching the point in question?

2. Is the function getting arbitrarily large (going to ∞ or −∞)?

3. Does the function behave erratically, that is it does not seem to be ap-
proaching any value?

In the first case, we will say that the limit exists and is equal to the value
the function seems to be approaching. In the other cases, we will say that the
limit does not exist. We have the following definition:

Definition 3.2.1 We write lim
(x,y)→(a,b)

f (x, y) = L and we read the limit of

f (x, y) as (x, y) approaches (a, b) is L, if we can make f (x, y) as close as
we want to L, simply by taking (x, y) close enough to (a, b) but not equal to it.

Remark 3.2.2 It is important to note that when computing lim
(x,y)→(a,b)

f (x, y),

(x, y) is never equal to (a, b). In fact, the function may not even be defined at
(a, b), yet the limit may still exist. While (a, b) may not be in the domain of f ,
the points (x, y) we consider as (x, y)→ (a, b) are always in the domain of f .

Remark 3.2.3 There are several notation for this limit. They all represent the
same thing, we list them below.
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1. lim
(x,y)→(a,b)

f (x, y) = L

2. lim
x→a
y→b

f (x, y) = L

3. f (x, y) approaches L as (x, y) approaches (a, b).

We now look at how limits can be computed.

3.2.2 Finding Limits Using the Numerical Method

We try to estimate or "guess" if a limit exists and what its value is by looking
at a table of values. Such a table will be more complicated than in the case of
functions of one variable. When (x, y)→ (a, b), we have to consider all possible
combinations of x→ a and y → b. This usually results in a square table as the
ones shown below.

Example 3.2.4 Consider the function f (x, y) =
sin(x2+y2)
x2+y2 . Use a table of

values to "guess" lim
(x,y)→(0,0)

f (x, y).

We begin by making a table of values of f (x, y) for (x, y) close to (0, 0).

x�y −1.0 −0.5 −0.2 0 0.2 0.5 1.0
−1.0 0.455 0.759 0.829 0.841 0.829 0.759 0.455
−0.5 0.759 0.959 0.986 0.990 0.986 0.959 0.759
−0.2 0.829 0.986 0.999 1 0.999 0.986 0.829
0 0.841 0.990 1 1 0.990 0.841
0.2 0.829 0.986 0.999 1 0.999 0.986 0.829
0.5 0.759 0.959 0.986 0.990 0.986 0.959 0.759
1 0.455 0.759 0.829 0.841 0.829 0.759 0.455

Looking at the table, we can estimate the limit along certain paths. For example,
each column of the table gives the function values for a fixed y value. In the
column corresponding to y = 0, we have the values of f (x, 0) for values of x
close to 0, from either direction. So we can estimate the limit along the path
y = 0. In fact, the column corresponding to y = b can be used to estimate the
limit along the path y = b. Similarly, the row x = a can be used to estimate
the limit along the path x = a. The diagonal of the table from the top left to
the bottom right correspond to values x = y. It can be used to estimate the
limit along the path y = x. The other diagonal, from top right to bottom left
corresponds to y = −x. So, it can be used to estimate the limit along the path
y = −x. Looking at the table, it seems that the limit along any of the paths
discussed appears to be 1. While this does not prove it for sure, as there are
many more paths to consider, this gives us an indication that it might be. We
can then try to use other methods we will discuss in the next sections to try to
show the limit is indeed 1. It turns out this limit is indeed 1.
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Example 3.2.5 Consider the function g (x, y) = x2−y2
x2+y2 . Use a table of values

to "guess" lim
(x,y)→(0,0)

g (x, y).

We begin by making a table of values of g (x, y) for (x, y) close to (0, 0).

x�y −1.0 −0.5 −0.2 0 0.2 0.5 1.0
−1.0 0 0.6 0.923 1 0.923 0.6 0
−0.5 −0.6 0 0.724 1 0.724 0 −0.6
−0.2 −0.923 −0.724 0 1 0 −0.724 −0.923
0 −1 −1 −1 −1 −1 −1
0.2 −0.923 −0.724 0 1 0 −0.724 −0.923
0.5 −0.6 0 0.724 1 0.724 0 −0.6
1 0 0.6 0.923 1 0.923 0.6 0

Looking at the table as indicated in the previous example, we see that the limit
along the path y = 0 appears to be 1 while the limit along the path x = 0 appears
to be −1. This proves lim

(x,y)→(0,0)
g (x, y) does not exist.

Example 3.2.6 Consider the function h (x, y) = x2y
x4+y2 . Use a table of values

to "guess" lim
(x,y)→(0,0)

h (x, y).

We begin by making a table of values of h (x, y) for (x, y) close to (0, 0).

x�y −1.0 −0.5 −0.2 0 0.2 0.5 1.0
−1.0 −0.5 −0.4 −0.1923 0 0.1923 0.4 0.5
−0.5 −0.2352 −0.4 −0.4878 0 0.4878 0.4 0.2352
−0.2 −0.039 −0.079 −0.1923 0 0.1923 0.079 0.039
0 0 0 0 0 0 0
0.2 −0.039 −0.079 −0.1923 0 0.1923 0.079 0.039
0.5 −0.2352 −0.4 −0.4878 0 0.4878 0.4 0.2352
1 −0.5 −0.4 −0.1923 0 0.1923 0.4 0.5

Looking at this table as indicated in the previous examples, it appears that the
limit along the paths x = 0, y = 0, y = x and y = −x is 0. However, as we will
see in the next section, this limit does not exist. In this case, the table would
have given the wrong indication.

In conclusion, we see that tables do not provide as good an answer as in the
case of functions of one variable. They can be helpful when the limit does not
exist, if the table shows two paths leading to a different limit. However, since
the number of paths we can see on the table is limited, they will not, in general
tell us for sure if a limit exists. They can still be used to get an idea of whether
the limit might exist and what it might be. Given a function, and a limit to
compute, if one does not have any idea of what this function does, looking at a
table of values might help to point the person in one direction. Usually, solving
a problem is easier if one has an idea of what the answer might be. So, while the
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use of such tables is more limited than in the case of functions of one variable,
these tables are not useless.

3.2.3 Finding Limits Using the Analytical Method

Computing limits using the analytical method is computing limits using the
limit rules and theorems. We will see that these rules and theorems are similar
to those used with functions of one variable. We present them without proof,
and illustrate them with examples.

Theorem 3.2.7 (Properties of Limits of Functions of Several Variables)
We list these properties for functions of two variables. Similar properties hold
for functions of more variables. Let us assume that L,M , and k are real numbers
and that lim

(x,y)→(a,b)
f (x, y) = L and lim

(x,y)→(a,b)
g (x, y) = M , then the following

hold:

1. First, we have the obvious limits

lim
(x,y)→(a,b)

x = a

lim
(x,y)→(a,b)

y = b

If c is any constant,
lim

(x,y)→(a,b)
c = c

2. Sum and difference rules:

lim
(x,y)→(a,b)

[f (x, y)± g (x, y)] = L±M

3. Constant multiple rule:

lim
(x,y)→(a,b)

[kf (x, y)] = kL

4. Product rule:
lim

(x,y)→(a,b)
[f (x, y) g (x, y)] = LM

5. Quotient rule:

lim
(x,y)→(a,b)

[
f (x, y)

g (x, y)

]
=

L

M

provided M 6= 0.

6. Power rule: If r and s are integers with no common factors, and s 6= 0
then

lim
(x,y)→(a,b)

[f (x, y)]

r

s = L

r

s

provided L

r

s is a real number. If s is even, we assume L > 0.
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Theorem 3.2.8 The above theorem applied to polynomials and rational func-
tions implies the following:

1. To find the limit of a polynomial, we simply plug in the point.

2. To find the limit of a rational function, we plug in the point as long as the
denominator is not 0.

Example 3.2.9 Find lim
(x,y)→(1,2)

x6y + 2xy

Combining the rules mentioned above allows us to do the following

lim
(x,y)→(1,2)

x6y + 2xy = 162 + 2 (1) (2)

= 2 + 4

= 6

Example 3.2.10 Find lim
(x,y)→(1,1)

x2y
x4+y2

Combining the rules mentioned above allows us to do the following

lim
(x,y)→(1,1)

x2y

x4 + y2
=

121

14 + 12

=
1

2

Remark 3.2.11 Like for functions of one variable, the rules do not apply when
"plugging-in" the point results in an indeterminate form. In that case, we must
use techniques similar to the ones used for functions of one variable. Such
techniques include factoring, multiplying by the conjugate. We illustrate them
with examples.

Example 3.2.12 Find lim
(x,y)→(0,0)

x3−y3
x−y

We cannot plug in the point as we get 0 in the denominator. We try to rewrite
the fraction to see if we can simplify it.

lim
(x,y)→(0,0)

x3 − y3

x− y = lim
(x,y)→(0,0)

(x− y)
(
x2 + xy + y2

)
x− y

= lim
(x,y)→(0,0)

(
x2 + xy + y2

)
= 0

Example 3.2.13 Find lim
(x,y)→(0,0)

x2 − xy√
x−√y

Here, we cannot plug in the point because we get
0

0
, an indeterminate form.

Since this is a fraction which involves a radical, we multiply by the conjugate.



222 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES

We get:

lim
(x,y)→(0,0)

x2 − xy√
x−√y = lim

(x,y)→(0,0)

(
x2 − xy

) (√
x+
√
y
)(√

x−√y
) (√

x+
√
y
)

= lim
(x,y)→(0,0)

x (x− y)
(√
x+
√
y
)

x− y

= lim
(x,y)→(0,0)

x
(√
x+
√
y
)

1

= 0

3.2.4 Limit Along a Path

We have mentioned several times above how important taking the limit along
a specific path might be. In particular, one way to prove that lim

(x,y)→(a,b)
f (x, y)

does not exist is to prove that this limit has different values along two different
paths. We now look at several examples to see how this might be done. In
general, you need to remember that specifying a path amounts to giving some
relation between x and y. When computing the limit along this path, use the
relation which defines the path. For example, when computing the limit along
the path y = 0, replace y by 0 in the function. If computing the limit along the
path y = x, replace y by x in the function. And so on...

Make sure that the path you select goes through the point at which
we are computing the limit.

Example 3.2.14 Consider the function f (x, y) = y
x+y−1 . The goal is to try to

find lim
(x,y)→(1,0)

y
x+y−1 .

You may remember from Calculus I that in many cases, to compute a limit we
simply plugged-in the point. If you try to do this here, you obtain 0

0 which is an
indeterminate form. It does not mean the limit does not exist. It means that
you need to study it further. We will do this by looking at the limit along various
paths. As mentioned in the introduction, some obvious paths we might try are
the path x = 1 and y = 0.

1. Limit along the path y = 0. First, we find what the function becomes along

this path. We will use the notation y
x+y−1

∣∣∣
y=0

to mean y
x+y−1 along the

path y = 0 and lim
(x,y)→(1,0)

along y=0

y
x+y−1 to mean lim

(x,y)→(1,0)

y
x+y−1 along the path

y = 0. We have:

y

x+ y − 1

∣∣∣∣
y=0

=
0

x− 1

= 0
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Also, note that along the path y = 0, y is constant hence (x, y) → (1, 0)
can be replaced by x→ 1. Therefore

lim
(x,y)→(1,0)

along y=0

y

x+ y − 1
= lim

x→1
0

= 0

4

z
2

30

0
10
20

2
4

22 xy
4

00

4

10
20

2. Limit along the path x = 1. We have:

y

x+ y − 1

∣∣∣∣
x=1

=
y

1 + y − 1

=
y

y
= 1

Hence,

lim
(x,y)→(1,0)

along x=1

y

x+ y − 1
= lim

y→0
1

= 1
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4

2
0

20

2
4

z

y 22 x
4

0 0

4

20

3. Conclusion: The limits are different, therefore lim
(x,y)→(1,0)

y
x+y−1 does not

exist.

Example 3.2.15 Consider the function f (x, y) = x2−y2
x2+y2 . The goal is to try to

find lim
(x,y)→(0,0)

x2−y2
x2+y2 .

As mentioned in the introduction, some obvious paths we might try are the path
x = 0 and y = 0. Note that we can also combine both computations (finding
what the function is along the path and finding the limit).

1. Limit along the path x = 0. Along this path, we have

lim
(x,y)→(0,0)

along x=0

x2 − y2

x2 + y2
= lim

(x,y)→(0,0)

x2 − y2

x2 + y2

∣∣∣∣
x=0

= lim
(x,y)→(0,0)

−y2

y2

= lim
(x,y)→(0,0)

−1

= −1
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4

1

2

4x2
0

4

y 2

0
0z2

4
1

2. Limit along the path y = 0. Along this path, we have

lim
(x,y)→(0,0)

along y=0

y = 0
x2 − y2

x2 + y2
= lim

(x,y)→(0,0)

x2 − y2

x2 + y2

∣∣∣∣
y=0

= lim
(x,y)→(0,0)

x2

x2

= lim
(x,y)→(0,0)

1

= 1
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4

1

2

x
4

2

00

y4
2

z 0
2

4 1

3. Conclusion: The limits are different, therefore lim
(x,y)→(0,0)

x2−y2
x2+y2 does not

exist.

Example 3.2.16 Prove that lim
(x,y)→(0,0)

xy
x2+y2 does not exist.

First, we try the limit along the paths x = 0 and y = 0. The user will check
that both limits are 0. Next, we try along the path y = x. We get

lim
(x,y)→(0,0)

along y=x

xy

x2 + y2
= lim

(x,y)→(0,0)

xy

x2 + y2

∣∣∣∣
y=x

= lim
(x,x)→(0,0)

x2

x2 + x2

= lim
(x,x)→(0,0)

x2

2x2

= lim
(x,x)→(0,0)

1

2

=
1

2

We obtained a different limit. So, lim
(x,y)→(0,0)

xy
x2+y2 does not exist.

Example 3.2.17 Prove that lim
(x,y)→(0,0)

x2y
x4+y2 does not exist.

You will recognize this function, it is the function in the third table we did
earlier. From the table, it appeared that the limit along the paths x = 0, y = 0,
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and y = x was 0. Yet, you were told the limit did not exist. We prove it here.
The reader will check that if we compute the limit along the paths x = 0, y = 0,
y = x, we obtain 0 every time. In fact, the limit along any straight path through
(0, 0) is 0. The equation of such a path is y = mx. Along this path, we get

lim
(x,y)→(0,0)

along y=mx

x2y

x4 + y2
= lim

(x,y)→(0,0)

x2y

x4 + y2

∣∣∣∣
y=mx

= lim
(x,mx)→(0,0)

mx3

x4 +m2x2

= lim
x→0

mx3

x2 (x2 +m2)

= lim
x→0

mx

x2 +m2

= 0

However, we will get a different answer along the path y = x2.

lim
(x,y)→(0,0)

along y=x2

x2y

x4 + y2
= lim

(x,y)→(0,0)

x2y

x4 + y2

∣∣∣∣
y=x2

= lim
(x,x2)→(0,0)

x4

x4 + x4

= lim
x→0

x4

2x4

= lim
x→0

1

2

=
1

2

This proves that lim
(x,y)→(0,0)

x2y
x4+y2 does not exist.

3.2.5 Additional Techniques to Find Limits: Change of
Coordinates and Squeeze Theorem or Sandwich The-
orem

Sometimes, changing coordinates may be useful. Consider the example below.

Example 3.2.18 Using polar coordinates, find lim
(x,y)→(0,0)

x3+y3

x2+y2 .

Recall that the relationship between a point in polar coordinates (r, θ) with r ≥ 0
and rectangular coordinates (x, y) is

x = r cos θ

y = r sin θ



228 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES

From which, we can see that

x2 + y2 = r2 cos2 θ + r2 sin2 θ

= r2
(
cos2 θ + sin2 θ

)
= r2

and

x3 + y3 = r3 cos3 θ + r3 sin3 θ

= r3
(
cos3 θ + sin3 θ

)
Also, saying (x, y)→ (0, 0) is equivalent to saying r → 0+. Hence, we have:

lim
(x,y)→(0,0)

x3 + y3

x2 + y2
= lim

r→0+

r3
(
cos3 θ + sin3 θ

)
r2

= lim
r→0+

r
(
cos3 θ + sin3 θ

)
= 0

There is also an equivalent of the squeeze theorem. Suppose we are trying
to find lim

(x,y)→(a,b)
f (x, y) given f (x, y) and we suspect the limit might be L.

Theorem 3.2.19 Suppose that |f (x, y)− L| ≤ g (x, y) for every (x, y) inside
a disk centered at (a, b) ,except maybe at (a, b). If lim

(x,y)→(a,b)
g (x, y) = 0 then

lim
(x,y)→(a,b)

f (x, y) = L.

The diffi culty with this theorem is that we must suspect what the limit is
going to be. This is not too much of a problem. If you have tried a table of
values and found that along all the paths the table allows you to investigate,
the limit is the same, or if you have tried to compute the limit along different
paths and have found the same value every time. Then, you might suspect the
limit exists and is the common value you have found. It is this value you would
try in the squeeze theorem. The second diffi culty is finding the function g. This
is done using approximation of the initial function f . How it is done depends
on f . We illustrate how to do it with a few examples.

Example 3.2.20 Find lim
(x,y)→(0,0)

f (x, y) for f (x, y) = x2y
x2+y2 .

The reader will check that computing this limit along various paths such as x = 0,
y = 0, y = x gives 0. So, you might start suspecting the limit exists and is 0. We
now use the squeeze theorem to try to prove it. In other words, we need to find
a function g (x, y) such that |f (x, y)− 0| ≤ g (x, y) and lim

(x,y)→(0,0)
g (x, y) = 0.
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To find g, we proceed as follows:

|f (x, y)− 0| =

∣∣∣∣ x2y

x2 + y2
− 0

∣∣∣∣
=

∣∣∣∣ x2y

x2 + y2

∣∣∣∣
=

∣∣x2y
∣∣

|x2 + y2|

=

∣∣x2
∣∣ |y|

x2 + y2
since x2 + y2 ≥ 0

=
x2 |y|
x2 + y2

we can make a fraction bigger by making its denominator smaller. Thus, we
have

|f (x, y)− 0| =
x2 |y|
x2 + y2

≤ x2 |y|
x2

= |y|

If we let g (x, y) = |y|, we see that lim
(x,y)→(0,0)

g (x, y) = 0. Thus, by the squeeze

theorem, lim
(x,y)→(0,0)

f (x, y) = 0.

Example 3.2.21 Find lim
(x,y)→(1,0)

f (x, y) for f (x, y) = (x−1)2 ln x

(x−1)2+y2
.

The reader will verify that the limit along the paths x = 1, y = 0, y = x − 1
is always 0. So, we suspect the limit we want might be 0. We now use the
squeeze theorem to try to prove it. In other words, we need to find a function
g (x, y) such that |f (x, y)− 0| ≤ g (x, y) and lim

(x,y)→(0,0)
g (x, y) = 0. To find g,

we proceed as follows:

|f (x, y)− 0| = |f (x, y)|

=

∣∣∣∣∣ (x− 1)
2

lnx

(x− 1)
2

+ y2

∣∣∣∣∣
=

(x− 1)
2 |lnx|

(x− 1)
2

+ y2

≤ |lnx|

Since |lnx| → 0 as (x, y) → (1, 0), it follows by the squeeze theorem that
lim

(x,y)→(1,0)
f (x, y) = 0.
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There is another version of the squeeze theorem. As before, we suppose we
are trying to find lim

(x,y)→(a,b)
f (x, y) given f (x, y).

Theorem 3.2.22 If g (x, y) ≤ f (x, y) ≤ h (x, y) for all (x, y) 6= (x0, y0) in a
disk centered at (x0, y0) and if lim

(x,y)→(x0,y0)
g (x, y) = lim

(x,y)→(x0,y0)
h (x, y) = L

then lim
(x,y)→(x0,y0)

f (x, y) = L.

Here, the diffi culty is to find the two functions g and h which satisfy the
inequality and have a common limit. We illustrate this with an example.

Example 3.2.23 Does knowing that 2 |xy| − x2y2

6 ≤ 4 − 4 cos
√
|xy| ≤ 2 |xy|

help you with finding lim
(x,y)→(0,0)

4−4 cos
√
|xy|

|xy| ?

If we divide the inequality we have by |xy|, then we will have an inequality
involving the function for which we want the limit. If the two outer functions in
our new inequality have the same limit, then we will be done. Dividing each side
of the given inequality by |xy| which is positive (hence preserves the inequality)
gives us

2 |xy| − x2y2

6

|xy| ≤ 4− 4 cos
√
|xy|

|xy| ≤ 2 |xy|
|xy|

that is

2 |xy| − x2y2

6

|xy| ≤ 4− 4 cos
√
|xy|

|xy| ≤ 2

We compute lim
(x,y)→(0,0)

2|xy|− x
2y2

6

|xy| . We cannot just plug in the point because we

get 0
0 . We will eliminate the absolute value by considering cases.

case 1: xy > 0. In this case, |xy| = xy hence

lim
(x,y)→(0,0)

2 |xy| − x2y2

6

|xy| = lim
(x,y)→(0,0)

2xy − x2y2

6

xy

= lim
(x,y)→(0,0)

xy
(
2− xy

6

)
xy

= lim
(x,y)→(0,0)

(
2− xy

6

)
= 2
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case 2: xy < 0. In this case, |xy| = −xy hence

lim
(x,y)→(0,0)

2 |xy| − x2y2

6

|xy| = lim
(x,y)→(0,0)

−2xy − x2y2

6

−xy

= lim
(x,y)→(0,0)

−xy
(
2 + xy

6

)
−xy

= lim
(x,y)→(0,0)

(
2 +

xy

6

)
= 2

in conclusion: lim
(x,y)→(0,0)

2|xy|− x
2y2

6

|xy| = 2 and since lim
(x,y)→(0,0)

2 = 2, we are ex-

actly in the situation of the squeeze theorem. We conclude that lim
(x,y)→(0,0)

4−4 cos
√
|xy|

|xy| =

2.

3.2.6 Limits with Maple

To compute lim
(x,y)→(a,b)

f (x, y), use

limit( f (x, y) , {x = a, y = b} );

3.2.7 Continuity

Like in Calculus I, the definition of continuity is:

Definition 3.2.24 A function f (x, y) is said to be continuous at a point (a, b)
if the following is true:

1. (a, b) is in the domain of f .

2. lim
(x,y)→(a,b)

f (x, y) exists.

3. lim
(x,y)→(a,b)

f (x, y) = f (a, b)

Definition 3.2.25 If a function f is not continuous at a point (a, b), we say
that it is discontinuous at (a, b).

Definition 3.2.26 We say that a function f is continuous on a set D if it is
continuous at every point in D.

Thus, if we know that a function is continuous at a point, to find the limit
of the function at the point it is enough to plug-in the point. We now review
rules and theorem which allow us to determine if a function is continuous at a
point, or where a function is continuous.
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Theorem 3.2.27 The following results are true for multivariable functions:

1. The sum, difference and product of continuous functions is a continuous
function.

2. The quotient of two continuous functions is continuous as long as the
denominator is not 0.

3. Polynomial functions are continuous.

4. Rational functions are continuous in their domain.

5. If f (x, y) is continuous and g (x) is defined and continuous on the range
of f , then g (f (x, y)) is also continuous.

We now look at several examples.

Example 3.2.28 Is f (x, y) = x2y+3x3y4−x+2y continuous at (0, 0)? Where
is it continuous?
f (x, y) is a polynomial function, therefore it is continuous on R2. In particular,
it is continuous at (0, 0).

Example 3.2.29 Where is f (x, y) = 2x−y
x2+y2 continuous?

f is the quotient of two continuous functions, therefore it is continuous as long
as its denominator is not 0 that is on R2� {(0, 0)}.

Example 3.2.30 Where is f (x, y) = 1
x2−y continuous?

As above, f is the quotient of two continuous functions. Therefore, it is con-
tinuous as long as its denominator is not 0. The denominator is 0 along the
parabola y = x2. Therefore, f is continuous on

{
(x, y) ∈ R2 | y 6= x2

}
.

Example 3.2.31 Find where tan−1
(
xy2

x+y

)
is continuous.

Here, we have the composition of two functions. We know that tan−1 is con-

tinuous on its domain, that is on R. Therefore, tan−1
(
xy2

x+y

)
will be contin-

uous where xy2

x+y is continuous. Since
xy2

x+y is the quotient of two polynomial
functions, therefore it will be continuous as long as its denominator is not

0, that is as long as y 6= −x. It follows that tan−1
(
xy2

x+y

)
is continuous on{

(x, y) ∈ R2 : y 6= −x
}
.

Example 3.2.32 Find where ln
(
x2 + y2 − 1

)
is continuous.

Again, we have the composition of two functions. ln is continuous where it is
defined, that is on {x ∈ R : x > 0}. So, ln

(
x2 + y2 − 1

)
will be continuous as

long as x2 + y2 − 1 is continuous and positive. x2 + y2 − 1 is continuous on
R2, but x2 + y2 − 1 > 0 if and only if x2 + y2 > 1, that is outside the circle of
radius 1, centered at the origin. It follows that ln

(
x2 + y2 − 1

)
is continuous of

the portion of R2 outside the circle of radius 1, centered at the origin.
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Example 3.2.33 Where is f (x, y) =

{
x2−y2
x2+y2 if (x, y) 6= (0, 0)

0 at (0, 0)
continu-

ous?
Away from (0, 0), f is a rational function always defined. So, it is continuous.
We still need to investigate continuity at (0, 0). In an earlier example, we found
that lim

(x,y)→(0,0)

x2−y2
x2+y2 did not exist. Therefore, f is continuous everywhere except

at (0, 0).

Example 3.2.34 Where is f (x, y) =

{
x2y
x2+y2 if (x, y) 6= (0, 0)

0 at (0, 0)
continu-

ous?
Away from (0, 0), f is a rational function always defined. So, it is continuous.
We still need to investigate continuity at (0, 0). In an earlier example, we found
that lim

(x,y)→(0,0)

x2y
x2+y2 = 0. Therefore, f is also continuous at (0, 0). It follows

that f is continuous everywhere.

Remark 3.2.35 If the function of the example we just did had been defined
such that f (0, 0) = 1, then it would not have been continuous at (0, 0) since the
value of the limit at (0, 0) would not be the same as the value of the function.

3.2.8 Problems

Make sure you have read, studied and understood what was done above before
attempting the problems.

1. Find lim
(x,y)→(0,0)

3x2−y2+5
x2+y2+2

2. Find lim
(x,y)→(3,4)

√
x2 + y2 − 1

3. Find lim
(x,y)→(0,π4 )

secx tanx

4. Find lim
(x,y)→(0,ln 2)

ex−y

5. Find lim
(x,y)→(0,0)

ey sin x
x

6. Find lim
(x,y)→(1,0)

x sin y
x2+1

7. Find lim
(x,y)→(1,1)

x2−2xy+y2

x−y by first rewriting the fraction.

8. Find lim
(x,y)→(1,1)

xy−y−2x+2
x−1 by first rewriting the fraction.

9. Find lim
(x,y)→(0,0)

x−y+2
√
x−2
√
y√

x−√y by first rewriting the fraction.
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10. Find lim
(x,y)→(2,0)

√
2x−y−2

2x−y−4 by first rewriting the fraction.

11. Let P = (x, y, z). Find lim
P→(1,3,4)

(
1
x + 1

y + 1
z

)
12. Let P = (x, y, z). Find lim

P→(3,3,0)

(
sin2 x+ cos2 y + sec2 z

)
13. Let P = (x, y, z). Find lim

P→(π,0,3)
ze−2y cos 2x

14. At what points in the plane is f (x, y) continuous?

(a) f (x, y) = sin (x+ y).

(b) f (x, y) = ln
(
x2 + y2

)
.

15. At what points in the plane is g (x, y) continuous?

(a) g (x, y) = sin 1
xy

(b) g (x, y) = x+y
2+cos x .

16. At what points in space is f (x, y, z) continuous?

(a) f (x, y, z) = x2 + y2 − 2z2.

(b) f (x, y, z) =
√
x2 + y2 − 1

17. At what points in space is g (x, y, z) continuous?

(a) g (x, y, z) = xy sin 1
z .

(b) g (x, y, z) = 1
x2+z2−1 .

18. By considering different paths, show that lim
(x,y)→(0,0)

−x√
x2+y2

does not exist.

19. By considering different paths, show that lim
(x,y)→(0,0)

x2−y2
x2+y2 does not exist.

20. By considering different paths, show that lim
(x,y)→(0,0)

x−y
x+y does not exist.

21. By considering different paths, show that lim
(x,y)→(0,0)

x2+y
y does not exist.

22. Show that f (x, y) = 2x2y
x4+y2 has limit 0 along every straight line approach-

ing (0, 0).

23. Does knowing that

1− x2y2

3
<

tan−1 xy

xy
< 1

tell us anything about

lim
(x,y)→(0,0)

tan−1 xy

xy
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24. Does knowing that ∣∣∣∣sin 1

x

∣∣∣∣ ≤ 1

tell us anything about

lim
(x,y)→(0,0)

y sin
1

x

25. Consider the function f (x, y) = 2xy
x2+y2 . Suppose we want to find lim

(x,y)→(0,0)
f (x, y).

(a) Along the path y = mx, the function becomes 2m
1+m2 . Substituting

m = tan θ, show how the value of f varies with the line’s angle of
inclination.So, the value does depend solely on θ.

(b) Use the formula obtained in part a to show that the limit along the
line y = mx varies from −1 to 1 depending on the angle of approach.

26. Use polar coordinates to find lim
(x,y)→(0,0)

x3−xy2
x2+y2 .

27. Use polar coordinates to find lim
(x,y)→(0,0)

y2

x2+y2

28. Use polar coordinates to find lim
(x,y)→(0,0)

tan−1 |x|+|y|
x2+Y 2

3.2.9 Answers

1. Find lim
(x,y)→(0,0)

3x2−y2+5
x2+y2+2

lim
(x,y)→(0,0)

3x2 − y2 + 5

x2 + y2 + 2
=

5

2

2. Find lim
(x,y)→(3,4)

√
x2 + y2 − 1

lim
(x,y)→(3,4)

√
x2 + y2 − 1 = 2

√
6

3. Find lim
(x,y)→(0,π4 )

secx tanx

lim
(x,y)→(0,π4 )

secx tanx = 1

4. Find lim
(x,y)→(0,ln 2)

ex−y

lim
(x,y)→(0,ln 2)

ex−y =
1

2
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5. Find lim
(x,y)→(0,0)

ey sin x
x

lim
(x,y)→(0,0)

ey sinx

x
= 1

6. Find lim
(x,y)→(1,0)

x sin y
x2+1

lim
(x,y)→(1,0)

x sin y

x2 + 1
= 0

7. Find lim
(x,y)→(1,1)

x2−2xy+y2

x−y by first rewriting the fraction.

lim
(x,y)→(1,1)

x2 − 2xy + y2

x− y = 0

8. Find lim
(x,y)→(1,1)

xy−y−2x+2
x−1 by first rewriting the fraction.

lim
(x,y)→(1,1)

xy − y − 2x+ 2

x− 1
= −1

9. Find lim
(x,y)→(0,0)

x−y+2
√
x−2
√
y√

x−√y by first rewriting the fraction.

lim
(x,y)→(0,0)

x− y + 2
√
x− 2

√
y√

x−√y = 2

10. Find lim
(x,y)→(2,0)

√
2x−y−2

2x−y−4 by first rewriting the fraction.

lim
(x,y)→(2,0)

√
2x− y − 2

2x− y − 4
=

1

4

11. Let P = (x, y, z). Find lim
P→(1,3,4)

(
1
x + 1

y + 1
z

)
lim

P→(1,3,4)

(
1

x
+

1

y
+

1

z

)
=

19

12

12. Let P = (x, y, z). Find lim
P→(3,3,0)

(
sin2 x+ cos2 y + sec2 z

)
lim

P→(3,3,0)

(
sin2 x+ cos2 y + sec2 z

)
= 2

13. Let P = (x, y, z). Find lim
P→(π,0,3)

ze−2y cos 2x

lim
P→(π,0,3)

ze−2y cos 2x = 3
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14. At what points in the plane is f (x, y) continuous?

(a) f (x, y) = sin (x+ y).
f (x, y) is continuous on R2.

(b) f (x, y) = ln
(
x2 + y2

)
.

f is continuous for all (x, y) except (0, 0).

15. At what points in the plane is g (x, y) continuous?

(a) g (x, y) = sin 1
xy .

g (x, y) is continuous for all (x, y) not on the x or y-axes.

(b) g (x, y) = x+y
2+cos x .

g is always continuous.

16. At what points in space is f (x, y, z) continuous?

(a) f (x, y, z) = x2 + y2 − 2z2.
Continuous at all points since it is a polynomial.

(b) f (x, y, z) =
√
x2 + y2 − 1

f is continuous outside the cylinder of radius 1 along the z-axis.

17. At what points in space is g (x, y, z) continuous?

(a) g (x, y, z) = xy sin 1
z .

g is continuous as long as z 6= 0.

(b) g (x, y, z) = 1
x2+z2−1 .

g is continuous as long as x2 + z2 6= 1.

18. By considering different paths, show that lim
(x,y)→(0,0)

−x√
x2+y2

does not exist.

Just follow the instructions.

19. By considering different paths, show that lim
(x,y)→(0,0)

x2−y2
x2+y2 does not exist.

Just follow the instructions.

20. By considering different paths, show that lim
(x,y)→(0,0)

x−y
x+y does not exist.

Just follow the instructions.

21. By considering different paths, show that lim
(x,y)→(0,0)

x2+y
y does not exist.

Just follow the instructions.

22. Show that f (x, y) = 2x2y
x4+y2 has limit 0 along every straight line approach-

ing (0, 0).
Just follow the instructions (recall that a line through (0, 0) is of the form
y = mx).
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23. Does knowing that 1−x
2y2

3 < tan−1 xy
xy < 1 tell us anything about lim

(x,y)→(0,0)

tan−1 xy
xy ?

Yes, lim
(x,y)→(0,0)

tan−1 xy
xy = 1

24. Does knowing that
∣∣sin 1

x

∣∣ ≤ 1 tell us anything about lim
(x,y)→(0,0)

y sin 1
x?

Yes, lim
(x,y)→(0,0)

y sin 1
x = 0

25. Consider the function f (x, y) = 2xy
x2+y2 . Suppose we want to find lim

(x,y)→(0,0)
f (x, y).

(a) Along the path y = mx, the function becomes 2m
1+m2 . Substituting

m = tan θ, show how the value of f varies with the line’s angle of
inclination.
We obtain

2m

1 +m2
= sin 2θ

So, the value does depend solely on θ.

(b) Use the formula obtained in part a to show that the limit along the
line y = mx varies from −1 to 1 depending on the angle of approach.
This follows from the fact that −1 ≤ sin 2θ ≤ 1.

26. Use polar coordinates to find lim
(x,y)→(0,0)

x3−xy2
x2+y2 .

lim
(x,y)→(0,0)

x3 − xy2

x2 + y2
= 0

27. Use polar coordinates to find lim
(x,y)→(0,0)

y2

x2+y2

The limit does not exist.

28. Use polar coordinates to find lim
(x,y)→(0,0)

tan−1 |x|+|y|
x2+Y 2

lim
(x,y)→(0,0)

tan−1 |x|+ |y|
x2 + Y 2

=
π

2
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