Points of inflection

Yue Kwok Choy

Definition 1.

A point of inflection (point of inflexion) $(x_0, f(x_0))$ on a curve is a continuous point at which the function f(x) changes from convex (concave upward) to concave (concave downward) or vice versa as x passes through x_0 .

2. Continuity of the function

 $(x_0, f(x_0))$ is a point of inflection of the function y = f(x), then the function is also If continuous at that point. In other words, if (x_0, y_0) is not continuous, it must not be a point of inflection.

Example 1

 $y = \tan x$ is concave upward in the interval $\left(n\pi, n\pi + \frac{\pi}{2}\right)$ and concave downward in the interval $\left(n\pi + \frac{\pi}{2}, (n+1)\pi\right)$, where $n \in \mathbb{Z}$. However, at $x = n\pi + \frac{\pi}{2}$, $y = \tan x$ is

undefined and therefore these points are not points of inflection.

Readers may check that $(n\pi, 0)$ are points of inflection.

First derivative 3.

A point of inflexion of the curve y = f(x) must be continuous point but need not be differentiable there.

Example 2
$$y = f(x) = x^{1/3}$$

 $f'(x) = \frac{1}{3x^{2/3}}, f''(x) = -\frac{2}{9x^{5/3}}$

For x < 0, $f''(x) > 0 \Rightarrow$ concave upward For x > 0, $f''(x) < 0 \Rightarrow$ concave downward Although f'(0) and f''(0) are undefined, (0, 0) is still a point of inflection.

 $y = f(x) = x^{1/3}$ is the inverse function of $y = x^3$. The latter function obviously In fact, has also a point of inflection at (0, 0).

4. Second derivative

Even the first derivative exists in certain points of inflection, the second derivative may not exist at these points.

Setting the second derivative of a function to zero sometimes **cannot** find out all points of inflection.

Example 4 $y = f(x) = x^{2/3} (x-1)^{1/3}$ $f'(x) = \frac{3x-2}{3x^{1/3} (x-1)^{2/3}}$, $f''(x) = -\frac{2}{9x^{4/3} (x-1)^{5/3}}$

By setting f''(x) = 0, we get no solution for points of inflections.

5. Relative extremum

Points of inflection can also be the extremum points (maximum / minimum) at the same time.

Example 4 $y = f(x) = \frac{|x|}{(x+1)^2}$

For
$$x \neq 1$$
,

$$f(x) = \begin{cases} \frac{x}{(x+1)^2} & \text{, for } x > 0 \\ -\frac{x}{(x+1)^2} & \text{, for } x < 0 \end{cases} \quad f'(x) = \begin{cases} \frac{1-x}{(x+1)^2} & \text{, for } x > 0 \\ \frac{x-1}{(x+1)^2} & \text{, for } x < 0 \end{cases} \quad f''(x) = \begin{cases} \frac{2x-4}{(x+1)^2} & \text{, for } x > 0 \\ \frac{4-2x}{(x+1)^2} & \text{, for } x < 0 \end{cases}$$

If x < 0, $f''(x) > 0 \implies$ concave upward. If x > 0, $f''(x) < 0 \implies$ concave downward. $\therefore \quad (0, 0)$ is a point of inflection.

Note that (0, 0) is also a relative minimum point.

The reader may check that:

- 1. $\left(2,\frac{2}{9}\right)$ is another inflection point. 2. $\left(1,\frac{1}{4}\right)$ is a relative maximum point.
- **3.** Horizontal asymptote : y = 0. Vertical asymptote : x = -1.

Example 5
$$y = f(x) = \frac{x|x+1|}{x+2}$$

For $x \neq -2$,

$$f(x) = \begin{cases} \frac{x(x+1)}{x+2} & \text{, for } x > -1 \\ -\frac{x(x+1)}{x+2} & \text{, for } x < -1 \end{cases} \quad f''(x) = \begin{cases} \frac{x^2 + 4x + 2}{x+2} & \text{, for } x > -1 \\ -\frac{x^2 + 4x + 2}{x+2} & \text{, for } x < -1 \end{cases} \quad f''(x) = \begin{cases} \frac{4}{(x+2)^3} & \text{, for } x > -1 \\ -\frac{4}{(x+2)^3} & \text{, for } x < -1 \end{cases}$$

If x < -1, $f''(x) > 0 \implies$ concave downward. If x > -1, $f''(x) < 0 \implies$ concave upward. \therefore (-1, 0) is a point of inflection.

Note that (-1, 0) is also a relative minimum point.

The reader may check that:

- 1. $\left(-2+\sqrt{2},-3+2\sqrt{2}\right)$ is a relative minimum point.
- **2.** $\left(-2-\sqrt{2},3+2\sqrt{2}\right)$ is a relative minimum point.
- **3.** Vertical asymptote is x = -2.

4. Oblique asymptotes are y = x - 1 (for the positive side) and y = -x + 1 (for negative side).

Exercise Find the point(s) of inflection of each of the following curves:

1. $y = f(x) = \sqrt[3]{x^2(x+6)}$ **2.** $x^3 - y^3 = 8$ **3.** $y = f(x) = \sqrt[3]{x^2} + \sqrt[3]{x^2-1}$

Derivative help:
1.
$$y' = \frac{x+4}{x^{1/3}(x+6)^{2/3}}, \quad y'' = -\frac{8}{x^{4/3}(x+6)^{5/3}}$$

2. $y' = \frac{x^2}{(x^3-8)^{2/3}}, \quad y'' = -\frac{16x}{(x^3-8)^{5/3}}$
3. $y' = \frac{2[x^{4/3} + (x^2-1)^{2/3}]}{3x^{1/3}(x^2-1)^{2/3}}, \quad y'' = -\frac{2[3x^{4/3} + x^{10/3} - (x^2-1)^{2/3} + x^2(x^2-1)^{2/3}]}{9x^{4/3}(x^2-1)^{5/3}}$

Graphical help:

1.

3.

