1. Definition

A point of inflection (point of inflexion) ($\left.\mathrm{x}_{0}, \mathrm{f}\left(\mathrm{x}_{0}\right)\right)$ on a curve is a continuous point at which the function $f(x)$ changes from convex (concave upward) to concave (concave downward) or vice versa as x passes through x_{0}.

2. Continuity of the function

If $\left(x_{0}, f\left(x_{0}\right)\right)$ is a point of inflection of the function $y=f(x)$, then the function is also continuous at that point. In other words, if $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ is not continuous, it must not be a point of inflection.

Example 1

$y=\tan x \quad$ is concave upward in the interval $\left(n \pi, n \pi+\frac{\pi}{2}\right)$ and concave downward in the interval $\left(\mathrm{n} \pi+\frac{\pi}{2},(\mathrm{n}+1) \pi\right)$, where $\mathrm{n} \in \mathbb{Z}$. However, at $x=n \pi+\frac{\pi}{2}, \quad y=\tan x \quad$ is undefined and therefore these points are not
 points of inflection.

Readers may check that $(\mathrm{n} \pi, 0)$ are points of inflection.

3. First derivative

A point of inflexion of the curve $y=f(x)$ must be continuous point but need not be differentiable there.

Example 2

$$
y=f(x)=x^{1 / 3}
$$

$$
f^{\prime}(x)=\frac{1}{3 x^{2 / 3}}, f^{\prime \prime}(x)=-\frac{2}{9 x^{5 / 3}}
$$

For $\mathrm{x}<0, \quad \mathrm{f}$ " $(\mathrm{x})>0 \Rightarrow$ concave upward
For $\mathrm{x}>0, \mathrm{f} "(\mathrm{x})<0 \Rightarrow$ concave downward

Although $f^{\prime}(0)$ and $f^{\prime \prime}(0)$ are undefined, $(0,0)$ is still a point of inflection.

In fact, $y=f(x)=x^{1 / 3}$ is the inverse function of $y=x^{3}$. The latter function obviously has also a point of inflection at $(0,0)$.

4. Second derivative

Even the first derivative exists in certain points of inflection, the second derivative may not exist at these points.

Example $3 y=f(x)=x^{5 / 3}-x$,

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{5}{3} \mathrm{x}^{2 / 3}-1, \quad \mathrm{f}^{\prime \prime}(\mathrm{x})=\frac{10}{9 \mathrm{x}^{1 / 3}}
$$

If $\mathrm{x}<0, \quad \mathrm{f}^{\prime}(\mathrm{x})<0 \quad \Rightarrow$ concave downward.
If $\quad \mathrm{x}>0, \quad \mathrm{f}^{\prime}(\mathrm{x})>0 \quad \Rightarrow$ concave upward.
$f^{\prime}(0)=-1$ exists but $f^{\prime \prime}(0)$ does not exist. However, $(0,0)$ is a point of inflection.

Setting the second derivative of a function to zero sometimes cannot find out all points of inflection.

Example $4 \quad y=f(x)=x^{2 / 3}(x-1)^{1 / 3}$

$$
f^{\prime}(x)=\frac{3 x-2}{3 x^{1 / 3}(x-1)^{2 / 3}} \quad, \quad f^{\prime \prime}(x)=-\frac{2}{9 x^{4 / 3}(x-1)^{5 / 3}}
$$

By setting $f "(x)=0$, we get no solution for points of inflections.

By setting the denominator of f " (x) to 0 , we get $\mathrm{x}=0$ or 1 .

There is no sign change for $f^{\prime \prime}(x)=0$ as x goes through $\mathrm{x}=0$.
$\therefore \quad(0,0)$ is not a point of inflection.
There is a sign change for $f^{\prime \prime}(x)=0$
as x goes through $\mathrm{x}=1$.
$\therefore \quad(1,0)$ is not a point of inflection.

5. Relative extremum

Points of inflection can also be the extremum points (maximum / minimum) at the same time.

Example 4

$$
y=f(x)=\frac{|x|}{(x+1)^{2}}
$$

For $x \neq 1$,
$f(x)=\left\{\begin{array}{cc}\frac{x}{(x+1)^{2}} & , \text { for } x>0 \\ -\frac{x}{(x+1)^{2}} & , \text { for } x<0\end{array} \quad f^{\prime}(x)=\left\{\begin{array}{ll}\frac{1-x}{(x+1)^{2}} & , \text { for } x>0 \\ \frac{x-1}{(x+1)^{2}} & , \text { for } x<0\end{array} \quad f^{\prime \prime}(x)= \begin{cases}\frac{2 x-4}{(x+1)^{2}} & \text {, for } x>0 \\ \frac{4-2 x}{(x+1)^{2}} & \text {, for } x<0\end{cases}\right.\right.$

If $x<0, \quad \mathrm{f}^{\prime \prime}(\mathrm{x})>0 \Rightarrow$ concave upward.
If $\mathrm{x}>0, \mathrm{f} "(\mathrm{x})<0 \Rightarrow$ concave downward.
$\therefore \quad(0,0)$ is a point of inflection.

Note that $(0,0)$ is also a relative minimum point.

The reader may check that:

1. $\left(2, \frac{2}{9}\right)$ is another inflection point.
2. $\left(1, \frac{1}{4}\right)$ is a relative maximum point.
3. Horizontal asymptote : $\mathrm{y}=0$. Vertical asymptote: $\mathrm{x}=-1$.

Example $5 \quad y=f(x)=\frac{x|x+1|}{x+2}$
For $x \neq-2$,
$f(x)=\left\{\begin{array}{lll}\frac{x(x+1)}{x+2} & , \text { for } x>-1 \\ -\frac{x(x+1)}{x+2} & , & \text { for } x<-1\end{array} \quad f^{\prime}(x)=\left\{\begin{array}{cc}\frac{x^{2}+4 x+2}{x+2} & , \text { for } x>-1 \\ -\frac{x^{2}+4 x+2}{x+2} & , \text { for } x<-1\end{array} \quad f^{\prime \prime}(x)=\left\{\begin{array}{cl}\frac{4}{(x+2)^{3}} & \text {, for } x>-1 \\ -\frac{4}{(x+2)^{3}} & , \text { for } x<-1\end{array}\right.\right.\right.$

If $\mathrm{x}<-1, \quad \mathrm{f} "(\mathrm{x})>0 \Rightarrow$ concave downward.
If $\mathrm{x}>-1, \quad \mathrm{f} "(\mathrm{x})<0 \Rightarrow$ concave upward.
$\therefore \quad(-1,0)$ is a point of inflection.

Note that $(-1,0)$ is also a relative minimum point.

The reader may check that:

1. $(-2+\sqrt{2},-3+2 \sqrt{2})$ is a relative minimum point.

2. $(-2-\sqrt{2}, 3+2 \sqrt{2})$ is a relative minimum point.
3. Vertical asymptote is $\mathrm{x}=-2$.
4. Oblique asymptotes are $\mathrm{y}=\mathrm{x}-1$ (for the positive side) and $\mathrm{y}=-\mathrm{x}+1$ (for negative side).

Exercise Find the point(s) of inflection of each of the following curves:

1. $\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt[3]{\mathrm{x}^{2}(\mathrm{x}+6)}$
2. $x^{3}-y^{3}=8$
3. $y=f(x)=\sqrt[3]{x^{2}}+\sqrt[3]{x^{2}-1}$

Derivative help:

1. $y^{\prime}=\frac{x+4}{x^{1 / 3}(x+6)^{2 / 3}}, \quad y^{\prime \prime}=-\frac{8}{x^{4 / 3}(x+6)^{5 / 3}}$
2. $y^{\prime}=\frac{x^{2}}{\left(x^{3}-8\right)^{2 / 3}}, \quad y^{\prime \prime}=-\frac{16 x}{\left(x^{3}-8\right)^{5 / 3}}$
3. $\mathrm{y}^{\prime}=\frac{2\left[\mathrm{x}^{4 / 3}+\left(\mathrm{x}^{2}-1\right)^{2 / 3}\right]}{3 \mathrm{x}^{1 / 3}\left(\mathrm{x}^{2}-1\right)^{2 / 3}}, \quad \mathrm{y}^{\prime \prime}=-\frac{2\left[3 \mathrm{x}^{4 / 3}+\mathrm{x}^{10 / 3}-\left(\mathrm{x}^{2}-1\right)^{2 / 3}+\mathrm{x}^{2}\left(\mathrm{x}^{2}-1\right)^{2 / 3}\right]}{9 \mathrm{x}^{4 / 3}\left(\mathrm{x}^{2}-1\right)^{5 / 3}}$

Graphical help:

1.

2.

3.

