Cyclic Groups

Cyclic groups are groups in which every element is a power of some fixed element. (If the group is abelian and I'm using + as the operation, then I should say instead that every element is a *multiple* of some fixed element.) Here are the relevant definitions.

Definition. Let G be a group, $g \in G$. The **order** of g is the smallest positive integer n such that $g^n = 1$. If there is no positive integer n such that $g^n = 1$, then g has **infinite order**.

In the case of an abelian group with + as the operation and 0 as the identity, the order of g is the smallest positive integer n such that ng = 0.

Definition. If G is a group and $g \in G$, then the subgroup generated by g is

$$\langle g \rangle = \{ g^n \mid n \in \mathbb{Z} \}.$$

If the group is abelian and I'm using + as the operation, then

$$\langle g \rangle = \{ ng \mid n \in \mathbb{Z} \}.$$

Definition. A group G is cyclic if $G = \langle g \rangle$ for some $g \in G$. g is a generator of $\langle g \rangle$.

If a generator g has order n, $G = \langle g \rangle$ is cyclic of order n. If a generator g has infinite order, $G = \langle g \rangle$ is infinite cyclic.

Example. (The integers and the integers mod n are cyclic) Show that \mathbb{Z} and \mathbb{Z}_n for n > 0 are cyclic.

 \mathbb{Z} is an infinite cyclic group, because every element is a multiple of 1 (or of -1). For instance, $117 = 117 \cdot 1$. (Remember that " $117 \cdot 1$ " is really shorthand for $1 + 1 + \cdots + 1 - 1$ added to itself 117 times.)

In fact, it is the only infinite cyclic group up to **isomorphism**.

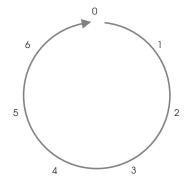
Notice that a cyclic group can have more than one generator.

If n is a positive integer, \mathbb{Z}_n is a cyclic group of order n generated by 1.

For example, 1 generates \mathbb{Z}_7 , since

```
1 + 1 = 2
1 + 1 + 1 = 3
1 + 1 + 1 + 1 = 4
1 + 1 + 1 + 1 + 1 = 5
1 + 1 + 1 + 1 + 1 + 1 = 6
1 + 1 + 1 + 1 + 1 + 1 = 0
```

In other words, if you add 1 to itself repeatedly, you eventually cycle back to 0.



a cyclic group of order 7

Notice that 3 also generates \mathbb{Z}_7 :

$$3+3 = 6$$

$$3+3+3 = 2$$

$$3+3+3+3 = 5$$

$$3+3+3+3+3 = 1$$

$$3+3+3+3+3+3 = 4$$

$$3+3+3+3+3+3 = 0$$

The "same" group can be written using multiplicative notation this way:

$$\mathbb{Z}_7 = \{1, a, a^2, a^3, a^4, a^5, a^6\}.$$

In this form, a is a generator of \mathbb{Z}_7 .

It turns out that in $\mathbb{Z}_7 = \{0, 1, 2, 3, 4, 5, 6\}$, every nonzero element generates the group. On the other hand, in $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$, only 1 and 5 generate. \Box

Lemma. Let $G = \langle g \rangle$ be a finite cyclic group, where g has order n. Then the powers $\{1, g, \ldots, g^{n-1}\}$ are distinct.

Proof. Since g has order $n, g, g^2, \ldots g^{n-1}$ are all different from 1. Now I'll show that the powers $\{1, g, \ldots, g^{n-1}\}$ are distinct. Suppose $g^i = g^j$ where $0 \le j < i < n$. Then 0 < i - j < n and $g^{i-j} = 1$, contrary to the preceding observation.

Therefore, the powers $\{1, g, \ldots, g^{n-1}\}$ are distinct. \Box

Lemma. Let $G = \langle g \rangle$ be infinite cyclic. If m and n are integers and $m \neq n$, then $g^m \neq g^n$.

Proof. One of m, n is larger — suppose without loss of generality that m > n. I want to show that $g^m \neq g^n$; suppose this is false, so $g^m = g^n$. Then $g^{m-n} = 1$, so g has finite order. This contradicts the fact that a generator of an infinite cyclic group has infinite order. Therefore, $g^m \neq g^n$. \Box

The next result characterizes subgroups of cyclic groups. The proof uses the Division Algorithm for integers in an important way.

Theorem. Subgroups of cyclic groups are cyclic.

Proof. Let $G = \langle g \rangle$ be a cyclic group, where $g \in G$. Let H < G. If $H = \{1\}$, then H is cyclic with generator 1. So assume $H \neq \{1\}$.

To show H is cyclic, I must produce a generator for H. What is a generator? It is an element whose powers make up the group. A thing should be smaller than things which are "built from" it — for example, a brick is smaller than a brick building. Since elements of the subgroup are "built from" the generator, the generator should be the "smallest" thing in the subgroup.

What should I mean by "smallest"?

Well, G is cyclic, so everything in G is a power of g. With this discussion as motivation, let m be the smallest positive integer such that $g^m \in H$.

Why is there such an integer m? Well, H contains something other than $1 = g^0$, since $H \neq \{1\}$. That "something other" is either a positive or negative power of g. If H contains a positive power of g, it must contain a *smallest* positive power, by well ordering.

On the other hand, if H contains a negative power of g — say g^{-k} , where k > 0 — then $g^k \in H$, since H is closed under inverses. Hence, H again contains positive powers of g, so it contains a *smallest* positive power, by Well Ordering.

So I have g^m , the smallest positive power of g in H. I claim that g^m generates H. I must show that every $h \in H$ is a power of g^k . Well, $h \in H < G$, so at least I can write $h = g^n$ for some n. But by the Division Algorithm, there are unique integers q and r such that

$$n = mq + r$$
, where $0 \le r < m$.

It follows that

$$g^n = g^{mq+r} = (g^m)^q \cdot g^r$$
, so $h = (g^m)^q \cdot g^r$, or $g^r = (g^m)^{-q} \cdot h$.

Now $g^m \in H$, so $(g^m)^{-q} \in H$. Hence, $(g^m)^{-q} \cdot h \in H$, so $g^r \in H$. However, g^m was the smallest positive power of g lying in H. Since $g^r \in H$ and r < m, the only way out is if r = 0. Therefore, n = qm, and $h = g^n = (g^m)^q \in \langle g^m \rangle$.

This proves that g^m generates H, so H is cyclic. \Box

Example. (Subgroups of the integers) Describe the subgroups of \mathbb{Z} .

Every subgroup of \mathbb{Z} has the form $n\mathbb{Z}$ for $n \in \mathbb{Z}$. For example, here is the subgroup generated by 13:

$$13\mathbb{Z} = \langle 13 \rangle = \{\ldots - 26, -13, 0, 13, 26, \ldots\}.$$

Example. Consider the following subset of \mathbb{Z} :

$$H = \{30x + 42y + 70z \mid x, y, z \in \mathbb{Z}\}.$$

(a) Prove that H is a subgroup of \mathbb{Z} .

(b) Find a generator for H.

(a) First,

$$0 = 30 \cdot 0 + 42 \cdot 0 + 70 \cdot 0 \in H.$$

If $30x + 42y + 70z \in H$, then

$$-(30x + 42y + 70z) = 30(-x) + 42(-y) + 70(-z) \in H.$$

If 30a + 42b + 70c, $30d + 42e + 70f \in H$, then

$$(30a + 42b + 70c) + (30d + 42e + 70f) = 30(a + d) + 42(b + e) + 70(c + f) \in H.$$

Hence, H is a subgroup. \Box

(b) Note that 2 = (30, 42, 70). I'll show that $H = \langle 2 \rangle$. First, if $30x + 42y + 70z \in H$, then

$$30x + 42y + 70z = 2(15x + 21y + 35z) \in \langle 2 \rangle.$$

Therefore, $H \subset \langle 2 \rangle$. Conversely, suppose $2n \in \langle 2 \rangle$. I must show $2n \in H$. The idea is to write 2 as a linear combination of 30, 42, and 70. I'll do this in two steps. First, note that (30, 42) = 6, and

$$30 \cdot 3 + 42 \cdot (-2) = 6.$$

(You can do this by juggling numbers or using the Extended Euclidean algorithm.) Now (6, 70) = 2, and

 $6 \cdot 12 + 70 \cdot (-1) = 2.$

Plugging $6 = 30 \cdot 3 + 42 \cdot (-2)$ into the last equation, I get

$$(30 \cdot 3 + 42 \cdot (-2)) \cdot 12 + 70 \cdot (-1) = 2$$

$$30 \cdot 36 + 42 \cdot (-24) + 70 \cdot (-1) = 2$$

Now multiply the last equation by n:

$$2n = 30 \cdot 36n + 42 \cdot (-24n) + 70 \cdot (-n) \in H.$$

This shows that $\langle 2 \rangle \subset H$. Therefore, $H = \langle 2 \rangle$. \Box

Lemma. Let G be a group, and let $g \in G$ have order m. Then $g^n = 1$ if and only if m divides n.

Proof. If *m* divides *n*, then n = mq for some *q*, so $g^n = (g^m)^q = 1$. Conversely, suppose that $g^n = 1$. By the Division Algorithm,

$$n = mq + r$$
 where $0 \le r < m$.

Hence,

$$q^n = q^{mq+r} = (q^m)^q q^r$$
 so $1 = q^r$.

Since m is the smallest positive power of g which equals 1, and since r < m, this is only possible if r = 0. Therefore, n = qm, which means that m divides n. \Box

Example. (The order of an element) Suppose an element g in a group G satisfies $g^{45} = 1$. What are the possible values for the order of g?

The order of g must be a divisor of 45. Thus, the order could be

$$1, 3, 5, 9, 15, \text{ or } 45.$$

And the order is certainly not (say) 7, since 7 doesn't divide 45. \Box

Thus, the order of an element is the *smallest* power which gives the identity the element in two ways. It is *smallest* in the sense of being *numerically* smallest, but it is also *smallest* in the sense that it *divides* any power which gives the identity.

Next, I'll find a formula for the order of an element in a cyclic group.

Proposition. Let $G = \langle g \rangle$ be a cyclic group of order *n*, and let m < n. Then g^m has order $\frac{n}{(m,n)}$.

Remark. Note that the order of g^m (the element) is the same as the order of $\langle g^m \rangle$ (the subgroup).

Proof. Since (m, n) divides m, it follows that $\frac{m}{(m, n)}$ is an integer. Therefore, n divides $\frac{mn}{(m, n)}$, and by the last lemma,

$$(g^m)^{\frac{n}{(m,n)}} = 1$$

Now suppose that $(q^m)^k = 1$. By the preceding lemma, n divides mk, so

$$\frac{n}{(m,n)} \mid k \cdot \frac{m}{(m,n)}.$$

However, $\left(\frac{n}{(m,n)}, \frac{m}{(m,n)}\right) = 1$, so $\frac{n}{(m,n)}$ divides k. Thus, $\frac{n}{(m,n)}$ divides any power of g^m which is 1, so it is the order of g^m . \Box

In terms of \mathbb{Z}_n , this result says that $m \in \mathbb{Z}_n$ has order $\frac{n}{(m,n)}$.

Example. (Finding the order of an element) Find the order of the element a^{32} in the cyclic group $G = \{1, a, a^2, \dots, a^{37}\}$. (Thus, G is cyclic of order 38 with generator a.)

In the notation of the Proposition, n = 38 and m = 32. Since (38, 32) = 2, it follows that a^{32} has order $\frac{38}{2}$ = 19. \Box

Example. (Finding the order of an element) Find the order of the element $18 \in \mathbb{Z}_{30}$.

In this case, I'm using *additive* notation instead of multiplicative notation. The group is cyclic with order n = 30, and the element $18 \in \mathbb{Z}_{30}$ corresponds to a^{18} in the Proposition — so m = 18. (18,30) = 6, so the order of 18 is $\frac{30}{6} = 5$. \Box

Next, I'll give two important Corollaries of the proposition.

Corollary. The generators of $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$ are the elements of $\{0, 1, 2, \dots, n-1\}$ which are relatively prime to n.

Proof. If $m \in \{0, 1, 2, \dots, n-1\}$ is a generator, its order is n. The Proposition says its order is $\frac{n}{(m,n)}$ Therefore, $n = \frac{n}{(m,n)}$, so (m,n) = 1.

Conversely, if (m, n) = 1, then the order of m is

$$\frac{n}{(m,n)} = \frac{n}{1} = n.$$

Therefore, m is a generator of \mathbb{Z}_n . \Box

Example. (Finding the generators of a cyclic group) List the generators of:

(a) \mathbb{Z}_{12} .

(b) \mathbb{Z}_p , where p is prime.

(a) The generators of \mathbb{Z}_{12} are 1, 5, 7, and 11. These are the elements of $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$ which are relatively prime to 12. \Box

(b) If p is prime, the generators of \mathbb{Z}_p are $1, 2, \ldots, p-1$. \Box

Example. (a) List the generators of \mathbb{Z}_9 .

(b) List the elements of the subgroup $\langle 3 \rangle$ of \mathbb{Z}_{27} .

(c) List the generators of the subgroup $\langle 3 \rangle$ of \mathbb{Z}_{27} .

(a) The generators are the elements relatively prime to 9, namely 1, 2, 4, 5, 7, and 8. \Box

(b)

 $\langle 3 \rangle = \{0, 3, 6, 9, 12, 15, 18, 21, 24\}.$

(c) $\langle 3 \rangle$ is cyclic of order 9, so its generators are the elements corresponding to the generators 1, 2, 4, 5, 7, and 8 of \mathbb{Z}_9 . Since $27 = 3 \cdot 9$, I can just multiply these generators by 3.

Thus, the generators of $\langle 3 \rangle$ are 3, 6, 12, 15, 21, and 24. \Box

Corollary. A finite cyclic group of order n contains a subgroup of order m for each positive integer m which divides n.

Proof. Suppose G is a finite cyclic group of order n with generator g, and suppose $m \mid n$. Thus, mp = n for some p.

I claim that g^p generates a subgroup of order m. The preceding proposition says that the order of g^p is $\frac{n}{(p,n)}$. However, $p \mid n$, so (p,n) = p. Therefore, g^p has order

$$\frac{n}{(p,n)} = \frac{n}{p} = m.$$

In other words, g^p generates a subgroup of order m. \Box

In fact, it's possible to prove that there is a *unique* a subgroup of order m for each m dividing n. Note that for an *arbitrary* finite group G, it isn't true that if $n \mid |G|$, then G contains a cyclic subgroup of order n.

Example. (Subgroups of a cyclic group) (a) List the subgroups of \mathbb{Z}_{15} .

(b) List the subgroups of \mathbb{Z}_{24} .

(a) \mathbb{Z}_{15} contains subgroups of order 1, 3, 5, and 15, since these are the divisors of 15. The subgroup of order 1 is the identity, and the subgroup of order 15 is the entire group.

The last result says: If n divides 15, then there is a subgroup of order n — in fact, a *unique* subgroup of order n.

Since \mathbb{Z}_{15} is cyclic, these subgroups must be cyclic. They are generated by 0 and the nonzero elements in \mathbb{Z}_{15} which divide 15: 1, 3, and 5.

Lagrange's theorem (which I'll discuss later) says that in any finite group, the order of a subgroup must divide the order of the group. In this context, Lagrange's theorem says if H is a subgroup of order n, then n divides 15.

Putting these results together, this means that you can find *all* the subgroups of \mathbb{Z}_{15} by taking $\{0\}$ (the trivial subgroup), together with the cyclic subgroups generated by the nonzero elements in \mathbb{Z}_{15} which divide 15: 1, 3, and 5.

1 generates \mathbb{Z}_{15} .

5 generates a subgroup of order 3:

$$\langle 5 \rangle = \{0, 5, 10\}.$$

3 generates a subgroup of order 5:

$$\langle 3 \rangle = \{0, 3, 6, 9, 12\}.$$

(b) Since the divisors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24, the subgroups of \mathbb{Z}_{24} are:

 $\langle 0 \rangle$, $\langle 1 \rangle$, $\langle 2 \rangle$, $\langle 3 \rangle$, $\langle 4 \rangle$, $\langle 6 \rangle$, $\langle 8 \rangle$, $\langle 12 \rangle$.

The subgroup generated by 3 has order 8:

$$\langle 3 \rangle = \{0, 3, 6, 9, 12, 15, 18, 21\}.$$

Example. (A product of cyclic groups) Consider the group

$$\mathbb{Z}_2 \times \mathbb{Z}_3 = \{ (m, n) \mid m \in \mathbb{Z}_2, n \in \mathbb{Z}_3 \}.$$

Show that $\mathbb{Z}_2 \times \mathbb{Z}_3$ is cyclic by finding a generator.

The operation is componentwise addition:

$$(m, n) + (m', n') = (m + m', n + n').$$

It is routine to verify that this is a group, the **direct product** of \mathbb{Z}_2 and \mathbb{Z}_3 . The element $(1,1) \in \mathbb{Z}_2 \times \mathbb{Z}_3$ has order 6:

$$\begin{aligned} (1,1) + (1,1) &= (0,2), \\ (1,1) + (0,2) &= (1,0), \\ (1,1) + (1,0) &= (0,1), \\ (1,1) + (0,1) &= (1,2), \\ (1,1) + (1,2) &= (0,0). \end{aligned}$$

Hence, $\mathbb{Z}_2 \times \mathbb{Z}_3$ is cyclic of order 6. More generally, if (m, n) = 1, then $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic of order mn. Be careful! — $\mathbb{Z}_2 \times \mathbb{Z}_2$ is *not* the same as \mathbb{Z}_4 ! \Box