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Cyclic Groups

Cyclic groups are groups in which every element is a power of some fixed element. (If the group is
abelian and I’m using + as the operation, then I should say instead that every element is a multiple of some
fixed element.) Here are the relevant definitions.

Definition. Let G be a group, g ∈ G. The order of g is the smallest positive integer n such that gn = 1.
If there is no positive integer n such that gn = 1, then g has infinite order.

In the case of an abelian group with + as the operation and 0 as the identity, the order of g is the
smallest positive integer n such that ng = 0.

Definition. If G is a group and g ∈ G, then the subgroup generated by g is

〈g〉 = {gn | n ∈ Z}.

If the group is abelian and I’m using + as the operation, then

〈g〉 = {ng | n ∈ Z}.

Definition. A group G is cyclic if G = 〈g〉 for some g ∈ G. g is a generator of 〈g〉.

If a generator g has order n, G = 〈g〉 is cyclic of order n. If a generator g has infinite order, G = 〈g〉
is infinite cyclic.

Example. (The integers and the integers mod n are cyclic) Show that Z and Zn for n > 0 are cyclic.

Z is an infinite cyclic group, because every element is a multiple of 1 (or of−1). For instance, 117 = 117·1.

(Remember that “117 · 1” is really shorthand for 1 + 1 + · · ·+ 1 — 1 added to itself 117 times.)

In fact, it is the only infinite cyclic group up to isomorphism.

Notice that a cyclic group can have more than one generator.

If n is a positive integer, Zn is a cyclic group of order n generated by 1.

For example, 1 generates Z7, since

1 + 1 = 2

1 + 1 + 1 = 3

1 + 1 + 1 + 1 = 4

1 + 1 + 1 + 1 + 1 = 5

1 + 1 + 1 + 1 + 1 + 1 = 6

1 + 1 + 1 + 1 + 1 + 1 + 1 = 0
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In other words, if you add 1 to itself repeatedly, you eventually cycle back to 0.

0

1

2

34

5

6

a cyclic group of order 7

Notice that 3 also generates Z7:

3 + 3 = 6

3 + 3 + 3 = 2

3 + 3 + 3 + 3 = 5

3 + 3 + 3 + 3 + 3 = 1

3 + 3 + 3 + 3 + 3 + 3 = 4

3 + 3 + 3 + 3 + 3 + 3 + 3 = 0

The “same” group can be written using multiplicative notation this way:

Z7 = {1, a, a2, a3, a4, a5, a6}.

In this form, a is a generator of Z7.
It turns out that in Z7 = {0, 1, 2, 3, 4, 5, 6}, every nonzero element generates the group.
On the other hand, in Z6 = {0, 1, 2, 3, 4, 5}, only 1 and 5 generate.

Lemma. Let G = 〈g〉 be a finite cyclic group, where g has order n. Then the powers {1, g, . . . , gn−1} are
distinct.

Proof. Since g has order n, g, g2, . . . gn−1 are all different from 1.
Now I’ll show that the powers {1, g, . . . , gn−1} are distinct. Suppose gi = gj where 0 ≤ j < i < n. Then

0 < i− j < n and gi−j = 1, contrary to the preceding observation.
Therefore, the powers {1, g, . . . , gn−1} are distinct.

Lemma. Let G = 〈g〉 be infinite cyclic. If m and n are integers and m 6= n, then gm 6= gn.

Proof. One of m, n is larger — suppose without loss of generality that m > n. I want to show that gm 6= gn;
suppose this is false, so gm = gn. Then gm−n = 1, so g has finite order. This contradicts the fact that a
generator of an infinite cyclic group has infinite order. Therefore, gm 6= gn.

The next result characterizes subgroups of cyclic groups. The proof uses the Division Algorithm for
integers in an important way.

Theorem. Subgroups of cyclic groups are cyclic.

Proof. Let G = 〈g〉 be a cyclic group, where g ∈ G. Let H < G. If H = {1}, then H is cyclic with generator
1. So assume H 6= {1}.
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To show H is cyclic, I must produce a generator for H. What is a generator? It is an element whose
powers make up the group. A thing should be smaller than things which are “built from” it — for example,
a brick is smaller than a brick building. Since elements of the subgroup are “built from” the generator, the
generator should be the “smallest” thing in the subgroup.

What should I mean by “smallest”?
Well, G is cyclic, so everything in G is a power of g. With this discussion as motivation, let m be the

smallest positive integer such that gm ∈ H.
Why is there such an integer m? Well, H contains something other than 1 = g0, since H 6= {1}. That

“something other” is either a positive or negative power of g. If H contains a positive power of g, it must
contain a smallest positive power, by well ordering.

On the other hand, if H contains a negative power of g — say g−k, where k > 0 — then gk ∈ H, since
H is closed under inverses. Hence, H again contains positive powers of g, so it contains a smallest positive
power, by Well Ordering.

So I have gm, the smallest positive power of g in H. I claim that gm generates H. I must show that
every h ∈ H is a power of gk. Well, h ∈ H < G, so at least I can write h = gn for some n. But by the
Division Algorithm, there are unique integers q and r such that

n = mq + r, where 0 ≤ r < m.

It follows that

gn = gmq+r = (gm)q · gr, so h = (gm)q · gr, or gr = (gm)−q · h.

Now gm ∈ H, so (gm)−q ∈ H. Hence, (gm)−q ·h ∈ H, so gr ∈ H. However, gm was the smallest positive

power of g lying in H. Since gr ∈ H and r < m, the only way out is if r = 0. Therefore, n = qm, and
h = gn = (gm)q ∈ 〈gm〉.

This proves that gm generates H, so H is cyclic.

Example. (Subgroups of the integers) Describe the subgroups of Z.

Every subgroup of Z has the form nZ for n ∈ Z.
For example, here is the subgroup generated by 13:

13Z = 〈13〉 = {. . .− 26,−13, 0, 13, 26, . . .}.

Example. Consider the following subset of Z:

H = {30x+ 42y + 70z | x, y, z ∈ Z}.

(a) Prove that H is a subgroup of Z.

(b) Find a generator for H.

(a) First,
0 = 30 · 0 + 42 · 0 + 70 · 0 ∈ H.

If 30x+ 42y + 70z ∈ H, then

−(30x+ 42y + 70z) = 30(−x) + 42(−y) + 70(−z) ∈ H.

If 30a+ 42b+ 70c, 30d+ 42e+ 70f ∈ H, then

(30a+ 42b+ 70c) + (30d+ 42e+ 70f) = 30(a+ d) + 42(b+ e) + 70(c+ f) ∈ H.
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Hence, H is a subgroup.

(b) Note that 2 = (30, 42, 70). I’ll show that H = 〈2〉.
First, if 30x+ 42y + 70z ∈ H, then

30x+ 42y + 70z = 2(15x+ 21y + 35z) ∈ 〈2〉.

Therefore, H ⊂ 〈2〉.
Conversely, suppose 2n ∈ 〈2〉. I must show 2n ∈ H.
The idea is to write 2 as a linear combination of 30, 42, and 70. I’ll do this in two steps.
First, note that (30, 42) = 6, and

30 · 3 + 42 · (−2) = 6.

(You can do this by juggling numbers or using the Extended Euclidean algorithm.) Now (6, 70) = 2,
and

6 · 12 + 70 · (−1) = 2.

Plugging 6 = 30 · 3 + 42 · (−2) into the last equation, I get

(30 · 3 + 42 · (−2)) · 12 + 70 · (−1) = 2

30 · 36 + 42 · (−24) + 70 · (−1) = 2

Now multiply the last equation by n:

2n = 30 · 36n+ 42 · (−24n) + 70 · (−n) ∈ H.

This shows that 〈2〉 ⊂ H.
Therefore, H = 〈2〉.

Lemma. Let G be a group, and let g ∈ G have order m. Then gn = 1 if and only if m divides n.

Proof. If m divides n, then n = mq for some q, so gn = (gm)q = 1.
Conversely, suppose that gn = 1. By the Division Algorithm,

n = mq + r where 0 ≤ r < m.

Hence,
gn = gmq+r = (gm)qgr so 1 = gr.

Since m is the smallest positive power of g which equals 1, and since r < m, this is only possible if
r = 0. Therefore, n = qm, which means that m divides n.

Example. (The order of an element) Suppose an element g in a group G satisfies g45 = 1. What are
the possible values for the order of g?

The order of g must be a divisor of 45. Thus, the order could be

1, 3, 5, 9, 15, or 45.

And the order is certainly not (say) 7, since 7 doesn’t divide 45.
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Thus, the order of an element is the smallest power which gives the identity the element in two ways.
It is smallest in the sense of being numerically smallest, but it is also smallest in the sense that it divides

any power which gives the identity.
Next, I’ll find a formula for the order of an element in a cyclic group.

Proposition. Let G = 〈g〉 be a cyclic group of order n, and let m < n. Then gm has order
n

(m,n)
.

Remark. Note that the order of gm (the element) is the same as the order of 〈gm〉 (the subgroup).

Proof. Since (m,n) divides m, it follows that
m

(m,n)
is an integer. Therefore, n divides

mn

(m,n)
, and by the

last lemma,

(gm)
n

(m,n) = 1.

Now suppose that (gm)k = 1. By the preceding lemma, n divides mk, so

n

(m,n)

∣

∣

∣
k ·

m

(m,n)
.

However,

(

n

(m,n)
,

m

(m,n)

)

= 1, so
n

(m,n)
divides k. Thus,

n

(m,n)
divides any power of gm which is 1,

so it is the order of gm.

In terms of Zn, this result says that m ∈ Zn has order
n

(m,n)
.

Example. (Finding the order of an element) Find the order of the element a32 in the cyclic group
G = {1, a, a2, . . . a37}. (Thus, G is cyclic of order 38 with generator a.)

In the notation of the Proposition, n = 38 and m = 32. Since (38, 32) = 2, it follows that a32 has order
38

2
= 19.

Example. (Finding the order of an element) Find the order of the element 18 ∈ Z30.

In this case, I’m using additive notation instead of multiplicative notation. The group is cyclic with
order n = 30, and the element 18 ∈ Z30 corresponds to a18 in the Proposition — so m = 18.

(18, 30) = 6, so the order of 18 is
30

6
= 5.

Next, I’ll give two important Corollaries of the proposition.

Corollary. The generators of Zn = {0, 1, 2, . . . , n − 1} are the elements of {0, 1, 2, . . . , n − 1} which are
relatively prime to n.

Proof. If m ∈ {0, 1, 2, . . . , n − 1} is a generator, its order is n. The Proposition says its order is
n

(m,n)
.

Therefore, n =
n

(m,n)
, so (m,n) = 1.

Conversely, if (m,n) = 1, then the order of m is

n

(m,n)
=

n

1
= n.

Therefore, m is a generator of Zn.
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Example. (Finding the generators of a cyclic group) List the generators of:

(a) Z12.

(b) Zp, where p is prime.

(a) The generators of Z12 are 1, 5, 7, and 11. These are the elements of {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} which
are relatively prime to 12.
(b) If p is prime, the generators of Zp are 1, 2, . . . , p− 1.

Example. (a) List the generators of Z9.

(b) List the elements of the subgroup 〈3〉 of Z27.

(c) List the generators of the subgroup 〈3〉 of Z27.

(a) The generators are the elements relatively prime to 9, namely 1, 2, 4, 5, 7, and 8.

(b)
〈3〉 = {0, 3, 6, 9, 12, 15, 18, 21, 24}.

(c) 〈3〉 is cyclic of order 9, so its generators are the elements corresponding to the generators 1, 2, 4, 5, 7,
and 8 of Z9. Since 27 = 3 · 9, I can just multiply these generators by 3.

Thus, the generators of 〈3〉 are 3, 6, 12, 15, 21, and 24.

Corollary. A finite cyclic group of order n contains a subgroup of order m for each positive integer m which
divides n.

Proof. Suppose G is a finite cyclic group of order n with generator g, and suppose m | n. Thus, mp = n

for some p.
I claim that gp generates a subgroup of order m. The preceding proposition says that the order of gp is

n

(p, n)
. However, p | n, so (p, n) = p. Therefore, gp has order

n

(p, n)
=

n

p
= m.

In other words, gp generates a subgroup of order m.

In fact, it’s possible to prove that there is a unique a subgroup of order m for each m dividing n.
Note that for an arbitrary finite group G, it isn’t true that if n | |G|, then G contains a cyclic subgroup

of order n.

Example. (Subgroups of a cyclic group) (a) List the subgroups of Z15.

(b) List the subgroups of Z24.

(a) Z15 contains subgroups of order 1, 3, 5, and 15, since these are the divisors of 15. The subgroup of order
1 is the identity, and the subgroup of order 15 is the entire group.

The last result says: If n divides 15, then there is a subgroup of order n — in fact, a unique subgroup
of order n.
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Since Z15 is cyclic, these subgroups must be cyclic. They are generated by 0 and the nonzero elements
in Z15 which divide 15: 1, 3, and 5.

Lagrange’s theorem (which I’ll discuss later) says that in any finite group, the order of a subgroup
must divide the order of the group. In this context, Lagrange’s theorem says if H is a subgroup of order n,
then n divides 15.

Putting these results together, this means that you can find all the subgroups of Z15 by taking {0} (the
trivial subgroup), together with the cyclic subgroups generated by the nonzero elements in Z15 which divide
15: 1, 3, and 5.

1 generates Z15.
5 generates a subgroup of order 3:

〈5〉 = {0, 5, 10}.

3 generates a subgroup of order 5:

〈3〉 = {0, 3, 6, 9, 12}.

(b) Since the divisors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24, the subgroups of Z24 are:

〈0〉, 〈1〉, 〈2〉, 〈3〉, 〈4〉, 〈6〉, 〈8〉, 〈12〉.

The subgroup generated by 3 has order 8:

〈3〉 = {0, 3, 6, 9, 12, 15, 18, 21}.

Example. (A product of cyclic groups) Consider the group

Z2 × Z3 = {(m,n) | m ∈ Z2, n ∈ Z3}.

Show that Z2 × Z3 is cyclic by finding a generator.

The operation is componentwise addition:

(m,n) + (m′, n′) = (m+m′, n+ n′).

It is routine to verify that this is a group, the direct product of Z2 and Z3.
The element (1, 1) ∈ Z2 × Z3 has order 6:

(1, 1) + (1, 1) = (0, 2),

(1, 1) + (0, 2) = (1, 0),

(1, 1) + (1, 0) = (0, 1),

(1, 1) + (0, 1) = (1, 2),

(1, 1) + (1, 2) = (0, 0).

Hence, Z2 × Z3 is cyclic of order 6. More generally, if (m,n) = 1, then Zm × Zn is cyclic of order mn.
Be careful! — Z2 × Z2 is not the same as Z4!
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