AML710 CAD LECTURE 10

1. Analytical curves
2. Synthetic Curves

PLANE CURVES

The curves are an important part of many
engineering disciplines. We recognise curves
entirely confined to a plane as plane curves as
opposed to the curves existing in 3D spaces.

The curves arise because of the fact that we don't
have only polyhedral objects in the real world but
there are many curved objects also. To describe
such curved objects and their boundaries we need
different types of curves.

A curve may result as a solution of an algebraic
equation f(x,y)=0 in a plane or as the solution of an
equation like g(x,y,z)=0 in space.




ANALYTIC CURVES

Mathematically the curves can be described using
algebraic equations or in terms of a parameter
(parametric).

The analytical curves can be
Explicit

y=f(x) => for every x there is one value

Eg: y=mx+C

Can we represent a circle (or any closed curve) by such
equation?

Implicit (multi valued or closed functions)

f(x,y) =0 => multi-valued or closed curves

Eg: ‘
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Curve Fitting and Curve Fairing

When we have a given set of points through which a
curve has to pass through, essentially we are fitting
a curve to the data points. An analytic equation can
be written for the curve we have fit through this
data. Any point on the curve can be determined by
interpolation

On the other hand, the curve fairing technique is
used when an approximate relation of curve is
sufficient instead of an accurate one.

We use least square or some other method to
minimize the y’2 deviations. Such techniques give
an approximate curve

y=ax";y=ae™; y=c +c,x+c,x’ +..+c, x"




Curve Fitting

Here a curve fitting is done using polynomials of order n-3 to
n-1 where n is the number of points

The order of the polynomial used directly influences the shape
of the curve

ANALYTICAL AND PARAMETRIC REPRESENTATIONS
Analytical Representations
Precision
Compact Storage — we store only the equations
Ease of Interpolation
Slope and radius of curvature can be determined easily
Any point on the curve can be precisely determined

Parametric Representations
The slope of the curve is represented by tangent vectors

Infinite slope results when one of the components of
tangent vector is zero

As parameter is used, parametric representation is
independent of axis

The curve end points and length are fixed by the range




PARAMETRIZATION

Parametrization is a way to write a function so that all the
coordinates (or variables) depend on the same variable.

Example:
If we have a function z = f[x,y], and if the parameter
is "t" where the x-coordinate is expressible as g]t], and
the y-coordinate is expressible as h[t], we say we can write

the function coordinate-wise as {x[t], y[t], z[t]}. We reduce
the problem of two variables to that of one input variable ().

Consider the parametrization of a unit circle x*2+y"2=1 as:

P(t)= [x y] where x=x(t)& y = y(t)
Is there unique way of parametrizing the given function?

PARAMETRIC CURVES

In parametric form each coordinate of a point is represented
as a function of a single parameter, say t.

P(t):[x y] where x=x(t)& y = y(t)
The derivative or tangent vector on the curve is given by
Pny=lx@ yol
The slope of the curve dy/dx —
dy _dyldr _y'(®)
dx dx/dt x'(t)
Infinite slope results when one of the components of tangent
vector is zero
As a single parameter is used, parametric representation is
independent of axis
The curve end points and length are fixed by the parametric
range




Example of parametric curves

A simplest parametric curve, a straight line in single parameter t, is given
as
Pt)=B+(P,—-PB) 0<r<I
The components of P(t) in parametric form are:
x@)=x+(x,—x)t 0<r<1]

YO =y +(y, =)t =
Ex: Determine the line segment between the position vectors

(1 2) (4 3). Also determine the slope and tangent vector.
P)=R+(P-P)=(1 2)+[4 3)-( 2)k
=1 2)+(3 1)

x(t) =x+(x, —x)t=1+3t;
YO =y + =yt =2+t
The tangent vector and slope are:
Pn=[x@® ym]=3 11=3i+
dy dyldt y'(t)
—=——="—-=1/3
dx dx/dt x'(t)

CONIC SECTIONS

The general second-degree equation for conic sections is

ax” +2bxy+cy> +2dx+2ey+ f =0
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CONIC SECTIONS: Projective geometry
The general second-degree equation for conic sections is

ax® +2bxy+cy> +2dx+2ey+ f =0

Fig. 19

Taken from Geometry by M. Audin

CONIC SECTIONS

The general second-degree equation for conic sections is
ax” +2bxy+cy> +2dx+2ey+ f =0

By defining coefficients a, b, c, d, e and f we get variety of
conic sections.

If the curve is defined with respect to a local coordinates and

passes through origin, then f=0.

Suitable geometric boundary conditions are used to establish

curves through specific points
Eg.: c=1, we need 5 independent B.Cs to define the curve

between two points. These could be 1. Position of two end
points, 2. Slope at these points and 3. Another intermediate

point through which the curve must pass.




CONIC SECTIONS

Ellipse/circle and hyperbola are central conics and
parabola is not. Ellipse and circle form a compact
whereas parabola and hyperbola extend to infinity.

How can we draw an ellipse?

Hint: An ellipse with foci Fand F’is locus of a point M such
that (MF + MF’)=2a for some non-negative number a
such that 2a > FF’

b

Source: mathworld.wolfram.com

Representation of a circle
A non-parametric representation of a circular arc in the first quadrant is

y=t+Jl-x> 0<x<l1

Parametric representation <

PO =[x y]=[cos@ sinb] 0<f<=z
Alternatively the following parametric form can be used
1= . 2t

1+¢*’

X 0<t<1

141’




Algorithmic Representation of a circle
What is the problem with the scheme just discussed?
Computationally intensive because of repeated calculations
What is the solution?

An improved algorithm due to L.B.Smith (1969)
X, =rcos(6,+08), vy, =rsin(8 +06)

Where¥, is the parameter that determines (x; y))
x,,, = r(cos 6, cos 08 —sin 6, sin 66);

¥, = r(cos 6, sin 66 + cos 08sin 6,)

We know that
x,=rcosf; y, =rsiné,
This results in

X,,, =X, c0os 08 — y, sin 66;

V.. = X, 8in 30+ y, cos 06 where 66 = %

Representation of a circle
Notes:

1. The quantityd¢ is constant. Therefore cosd6 and  sin 56
need to be calculated only once and stored.
2. Only 6 inner loop operations are involved
(a) 4 multiplications
(b) one subtraction
(c) one addition
3. The result is comparable to the simple parametric
representation while achieving better efficiency
4. A non-origin centered circle can be generated by translating
the origin centered circle.

Alternatively a unit circle can be used to obtain any circle
of desired radius by suitably scaling and translation.




Parametric Representation of an ellipse
Simple relations:
xX=acosé, y=bsin@ 0<6<L2x (1)
An improved algorithm due to |.B.Smith (1969)

X, =acos(f,+00), 'y, =bsin(6, +36)
Whereo, is the parameter that determines (x; )

x,,, = a(cos 8, cos 08 —sin 6, sin 66); A

¥:,; =b(cos 6, sin 06 + cos d0sin 6,) 0

Substitute from (1) x;, =acosé,; y,=bsiné, v

This results in
X, = X, C0s 08 — £y, sin 50);

Vi =2x,5in 08+ y,cos 8¢) where 06 = =

(n=1)

Representation of an ellipse
Notes:
1. If a=b it reduces to the case of a circle
2. quantity &6 is constant. Therefore
need to be calculated only once.

2. Only 8 inner loop operations are involved
(a) 6 multiplications
(b) one subtraction -
(c) one addition V
3. The result is comparable to the simple parametric

representation while achieving better efficiency
4. A non-origin centered ellipse can be generated by translating
the origin centered ellipse.




Properties of a parametric Ellipse & circle

« The arc length s, curvature k, and
tangential angle phi of the circle with radius
r represented parametrically are

« Arc length: s(t)=rt (D
« Curvature: k(t)=1/t (2)
« Tangential angle: ¢(t)=t/r (3)
« Eccentricity ezﬁ 0<e<l (@)
» Perimeter (approx.) pr=r2a+r) ©

Properties of a parametric curves
»  For any parametric curve:

P@t)=[x(t) y()]

Speed of parameterization:

(=P =[xy
Eg: Consider a circle of radius r

P(t)= [r cos(t) r sin(t)]

x =—rsin(t)

y =rcos(t)

V(1) =X (1) + ¥'(£) = ryJcos® () +sin’(r) = r
A parameterization is called regular iff v(t) #0
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Arc length of parametric curves
»  For any parametric curve:

P(O=[x(t) y(®]

With Speed of parameterization:

v(i)=|P'0)|=|x@®) ¥y @)
The arc length of the curve is defined as:

L(t) = jv(t)dt = j\/x’2 )+ y'(t)dt

0 0
For the case of circle the arc length is:
1

t 27
L(t) = j v(t)dt = j [r2sin(t) + r2 cos>(t)]2 dt = 2
0 0

Representation of an ellipse
%Example 4.4 (R&A)
%Ellipse a=4, b=1 inclined 30 deg. to horizontal center at (2 2)
n=33; 15

dt=2*pi/32;
a=4;
b=1;
sdt=sin(dt);
cdt=cos(dt); of

1k

0.5r

x0=1.0;

yo=1.0; 0.5

for i=1:33
x(i)=xo*cdt-a/b*yo*sdt;
y(i)=xo0*b/a*sdt+yo*cdt;

x0=x(i);
yo=y(i);
end

plot(x.y)
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Some Exercises
1. The circumcircle of an ellipse, i.e., the circle whose

center concurs with that of the ellipse and whose radius is
equal to the ellipse's semimajor axis.

»

2. An ellipse intersects a circle in 0, 1, 2, 3, or 4 points. The points of
intersection of a circle of center (x_0,y_0) and radius r with an ellipse
of semi-major and semi-minor axes a and b, respectively and center
(x_e,y_e) can be determined by simultaneously solving

(X-x_0)"2+(y-y_0)"2=r"2 (1)
((x-x_e)"2)/(a"2)+((y-y_e)"2)/(b"2)=1. (2)

Some Exercises

If (x_0,y_0)=(x_e,y_e)=(0,0), then the solution takes on
the particularly simple form

X +/-a*sqrt((r"2-b"2)/(a*2-b"2)) (3)
y +/-b*sqrt((a*2-r"2)/(a*2-b"2)). (4)
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Parametric Representation of a Parabola
Analytical form: y2 =4dax
Parametric form:

x=tan’¢;  y=22\ atan¢ 0<g<Zz (1)
An improved algorithm due to L.B.Smith (1969)

x=ab?, y=2a6 0<f<L

Where ¢ is the parameter that determines (x y)
Since it is an open curve we need to calculate the
limits to display the curve

.
.
.

6 . =+ mn g Tm: based onx

6 . ==, 6 =-2m based ony

min 2a ° max 2a

Parametric Representation of a Parabola
Starting with
x=ab, y=2a6 0<f<Lo )]

x,, =ab’ +2a60.60 —a(56);
Vi, =2a6,+2a6,00

Substituting from (1)
X, =X +y,00+a(d8)*;
Vi =V, +2x,00 where 66 =

(n 1)
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Parametric Representation of a Hyperbola

Analytical form: X2 y2 _

— =1

a b
Parametric form: X =tasecld, y=xbtand (0<6<
Recall the identities

sec(@+06) =1/cos(8+ 66) =1/(cos @ cos 08 —sin & sin )

tan(@ + 00) = (tan @ + tan 06) /(1 — tan @ tan 06)
Expanding sum of angles

[=

X :iaSGC(Q-}-JH):i ab/cos @ . :
b cos 08 — b tan @sin 00
V., =tatan(6+00) == b tan 6 +b tan 66
1—tan @ tan 08
Substituting from (1) bx.

L

* ;
bcos 80—y, sin 66
. b(y, +btan o66)

i+1 T

i+l

where 06 = 2%

; 1)

~ b-y,tan &8 (b

Parametric Representation of a Hyperbola
Alternate Method
Recall the hyperbolic functions

x=acosh@,=(e’+e?) y=bsinh@=(e’—¢?) 0<h<

1)

Expanding sum of angles
x,,, = a(cosh @, cosh 06 —sinh 6, sinh 06);*

.., = b(cosh 8, sinh 68 + cosh 6@ sinh 6,) ]
Substituting from (1)

X,,, = X, cosh 08 — £ y, sinh 06,

Vs =2 x;sinh 08 + y, cosh 66 where 06 = 2=

(n-1)
The limits are
_ -1 .
6., =cosh™ (x_ /a);

6. =cosh™(x,,. /a) where cosh™ (x) =In(x++/x* 1)
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Parametric Representation of other plane curves
Confocal conics

M OWRA,
S \‘1\:\.‘{\;
R

Elliptic gears

Source: mathworld.wolfram.com

Parametric Representation of other plane curves
Epicycloid

oo O (e (p

x=(a+b)cos¢)—bcos(a+b

9)

a+b
b

y=(a+b)sin@—bsin( 0)

Source: mathworld.wolfram.com
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Parametric Representation of other plane curves
Hypocycloid

clelele

x=(a—b)cosp— bcos( (Z))

y:(a—b)sin¢—bsin(

¢)

Source: mathworld.wolfram.com

Parametric Representation of other plane curves
Gear Curve ne e

m="5 = 1 n=1] m=12

Here a=1, b=10 and n=1-12

X =rcost y=rsint

r=a+ % tanh[bsin(nt)]

Source: mathworld.wolfram.com
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