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PLANE CURVES

1. Analytical curves
2. Synthetic Curves

AML710 CAD LECTURE 10

PLANE CURVES
The curves are an important part of many 

engineering disciplines. We recognise curves 
entirely confined to a plane as plane curves as 
opposed to the curves existing in 3D spaces.

The curves arise because of the fact that we don’t 
have only polyhedral objects in the real world but 
there are many curved objects also. To describe 
such curved objects and their boundaries we need 
different types of curves.

A curve may result as a solution of an algebraic 
equation f(x,y)=0 in a plane or as the solution of an 
equation like g(x,y,z)=0 in space.
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ANALYTIC CURVES
Mathematically the curves can be described using 

algebraic equations or in terms of a parameter 
(parametric).

The analytical curves can be 
� Explicit
y= f(x) => for every x there is one value
Eg: y=mx+C
Can we represent a circle  (or any closed curve) by such 

equation?
� Implicit (multi valued or closed functions)
f(x,y) = 0 => multi-valued or closed curves
Eg: 
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Curve Fitting and Curve Fairing
When we have a given set of points through which a 

curve has to pass through, essentially we are fitting
a curve to the data points. An analytic equation can 
be written for the curve we have fit through this 
data. Any point on the curve can be determined by 
interpolation

On the other hand, the curve fairing technique is 
used when an approximate relation of curve is 
sufficient instead of an accurate one. 

We use least square or some other method to 
minimize the y^2 deviations. Such techniques give 
an approximate curve 
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Curve Fitting
Here a curve fitting is done using polynomials of order n-3 to 

n-1 where n is the number of points

The order of the polynomial used directly influences the shape 
of the curve

ANALYTICAL AND PARAMETRIC REPRESENTATIONS
Analytical Representations
� Precision
� Compact Storage – we store only the equations
� Ease of Interpolation
� Slope and radius of curvature can be determined easily
� Any point on the curve can be precisely determined

Parametric Representations
� The slope of the curve is represented by tangent vectors 
� Infinite slope results when one of the components of 

tangent vector is zero
� As parameter is used, parametric representation is 

independent of axis
� The curve end points and length are fixed by the range
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PARAMETRIZATION
Parametrization is a way to write a function so that all the 

coordinates (or variables) depend on the same variable. 
Example:
If we have a function z = f[x,y], and if the parameter 

is "t" where the x-coordinate is expressible as g[t], and
the y-coordinate is expressible as h[t], we say we can write 
the function coordinate-wise as {x[t], y[t], z[t]}.  We reduce 
the problem of two variables to that of one input variable (t).

Consider the parametrization of a unit circle x^2+y^2=1 as:

Is there unique way of parametrizing the given function?
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PARAMETRIC CURVES
In parametric form each coordinate of a point is represented 

as a function of a single parameter, say t.

The derivative or tangent vector on the curve is given by

The slope of the curve dy/dx –

Infinite slope results when one of the components of tangent 
vector is zero

As a single parameter is used, parametric representation is 
independent of axis

The curve end points and length are fixed by the parametric 
range
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Example of parametric curves
A simplest parametric curve, a straight line in single parameter t, is given 

as

The components of P(t) in parametric form are:

Ex: Determine the line segment between the position vectors
(1 2) (4 3). Also determine the slope and tangent vector.

The tangent vector and slope are:
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CONIC SECTIONS
The general second-degree equation for conic sections is
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CONIC SECTIONS: Projective geometry
The general second-degree equation for conic sections is

0222 22 =+++++ feydxcybxyax

Taken from Geometry by M. Audin

CONIC SECTIONS
The general second-degree equation for conic sections is

By defining coefficients a, b, c, d, e and f we get variety of 
conic sections.

If the curve is defined with respect to a local coordinates and 
passes through origin, then f=0.

Suitable geometric boundary conditions are used to establish 
curves through specific points

Eg.: c=1, we need 5 independent B.Cs to define the curve 
between two points. These could be 1. Position of two end 
points, 2. Slope at these points and 3. Another intermediate 
point through which the curve must pass.

0222 22 =+++++ feydxcybxyax
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CONIC SECTIONS
Ellipse/circle and hyperbola are central conics and 

parabola is not. Ellipse and circle form a compact 
whereas parabola and hyperbola extend to infinity.

How can we draw an ellipse?
Hint: An ellipse with foci F and F’ is locus of a point M such 

that (MF + MF’)=2a for some non-negative number a
such that 2a > FF’

Source: mathworld.wolfram.com

Representation of a circle
A non-parametric representation of  a circular arc in the first quadrant is

� Parametric representation

� Alternatively the following parametric form can be used
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Algorithmic Representation of a circle
What is the problem with the scheme just discussed?
Computationally intensive because of repeated calculations
What is the solution?

�An improved algorithm due to L.B.Smith (1969)

Where is the parameter that determines (xi yi)

We know that

This results in 
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Representation of a circle
Notes:

1. The quantity is constant. Therefore
need to be calculated only once and stored.

2. Only 6 inner loop operations are involved
(a) 4 multiplications
(b) one subtraction
(c) one addition

3. The result is comparable to the simple parametric 
representation while achieving better efficiency

4. A non-origin centered circle can be generated by translating
the origin centered circle.
� Alternatively a unit circle can be used to obtain any circle 

of desired radius by suitably scaling and translation.

δθδθ sinandcosδθ
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Parametric Representation of an ellipse
Simple relations:

�An improved algorithm due to I.B.Smith (1969)

Where is the parameter that determines (xi yi)

Substitute from (1)

This results in 
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Representation of an ellipse
Notes:
1. If a=b it reduces to the case of a circle
2. quantity is constant. Therefore

need to be calculated only once.
2. Only 8 inner loop operations are involved

(a) 6 multiplications
(b) one subtraction
(c) one addition

3. The result is comparable to the simple parametric 
representation while achieving better efficiency

4. A non-origin centered ellipse can be generated by translating
the origin centered ellipse.
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Properties of a parametric Ellipse & circle

• The arc length s, curvature k, and 
tangential angle phi of the circle with radius 
r represented parametrically are

• Arc length: 
• Curvature: 
• Tangential angle: 
• Eccentricity 
• Perimeter (approx.)
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Properties of a parametric curves
• For any parametric curve:

Speed of parameterization: 

Eg: Consider a circle of radius r

A parameterization is called regular iff
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Arc length of parametric curves
• For any parametric curve:

With Speed of parameterization: 

The arc length of the curve is defined as:

For the case of circle the arc length is:
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� Representation of an ellipse
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%Example 4.4 (R&A)

%Ellipse a=4, b=1 inclined 30 deg. to horizontal center at (2 2)

n=33;

dt=2*pi/32;

a=4;

b=1;

sdt=sin(dt);

cdt=cos(dt);

xo=1.0;

yo=1.0;

for i=1:33 

x(i)=xo*cdt-a/b*yo*sdt;

y(i)=xo*b/a*sdt+yo*cdt;

xo=x(i);

yo=y(i);

end 

plot(x,y)
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� Some Exercises
� 1. The circumcircle of an ellipse, i.e., the circle  whose 

center concurs with that of the ellipse and whose radius is 
equal to the ellipse's semimajor axis.

� 2. An ellipse intersects a circle in 0, 1, 2, 3, or 4 points. The points of 
intersection of a circle of center (x_0,y_0) and radius r with an ellipse 
of semi-major and semi-minor axes a and b, respectively and center 
(x_e,y_e) can be determined by simultaneously solving

� (x-x_0)^2+(y-y_0)^2=r^2 (1)
� ((x-x_e)^2)/(a^2)+((y-y_e)^2)/(b^2)=1. (2) 

� Some Exercises

� If (x_0,y_0)=(x_e,y_e)=(0,0), then the solution takes on 
the particularly simple form

� x = +/-a*sqrt((r^2-b^2)/(a^2-b^2)) (3)
� y = +/-b*sqrt((a^2-r^2)/(a^2-b^2)). (4) 
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�Parametric Representation of a Parabola
Analytical form: 
Parametric form:

�An improved algorithm due to L.B.Smith (1969)

Where is the parameter that determines (x y)
Since it is an open curve we need to calculate the 
limits to display the curve
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�Parametric Representation of a Parabola

Starting with 

Substituting from (1)
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�Parametric Representation of a Hyperbola
Analytical form: 

Parametric form:
Recall the identities

Expanding sum of angles 

Substituting from (1)
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�Parametric Representation of a Hyperbola
Alternate Method
Recall the hyperbolic functions

Expanding sum of angles 

Substituting from (1)

The limits are
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�Parametric Representation of other plane curves
�Confocal conics

�Elliptic gears

Source: mathworld.wolfram.com

�Parametric Representation of other plane curves
�Epicycloid
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�Parametric Representation of other plane curves
�Hypocycloid
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Source: mathworld.wolfram.com

�Parametric Representation of other plane curves
�Gear Curve
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Here a=1, b=10 and n=1-12

Source: mathworld.wolfram.com


