Appendix B

Envelopes

The idea of an envelope plays an important role in determining solution to fully nonlinear scalar partial differential equation (see Section 2.3 for details).

B.1 • Envelopes in two dimensions

Let C_m denote a family of curves in the xy-plane indexed by m, which are implicitly given by the equation F(x, y; m) = 0. Consider the curves C_m and $C_{m+\Delta m}$ given by

$$C_m: F(x, y; m) = 0$$
 (B.1a)

$$C_m: \quad F(x,y;m)=0 \tag{B.1a}$$

$$C_{m+\Delta m}: \quad F(x,y;m+\Delta m)=0. \tag{B.1b}$$

For $\Delta m \neq 0$, the above system is same as

$$F(x, y; m) = 0 \tag{B.2a}$$

$$\frac{F(x,y;m+\Delta m) - F(x,y;m)}{\Delta m} = 0.$$
 (B.2b)

Taking limit as $\Delta m \rightarrow 0$ in the equation (B.2b), we get

$$F(x, y; m) = 0 (B.3a)$$

$$\frac{\partial F}{\partial m}(x, y; m) = 0. {(B.3b)}$$

Definition B.1. The envelope of the family of curves C_m given by the equation (B.1a) is defined as the set of all $(x,y) \in \mathbb{R}^2$ satisfying the system of equations (B.3) for some value of the parameter m.

The envelope of the given family is obtained by eliminating m between the two equations in the system (B.3). Suppose we can solve for m as m = G(x, y), then the envelope is given by

$$F(x, y, G(x, y)) = 0.$$
 (B.4)

Remark B.2 (Properties of Envelopes). (i) The envelope touches every member of the family. That is for a point P(x, y) lying on the envelope of the family of curves C_m , there exists an m_0 such that $F(x, y, m_0) = 0$. This follows from the definition of envelope.

(ii) Wherever the envelope touches a particular member of the family C_m , it touches tangentially. That is, if a point P(x,y) on the envelope lies on the curve C_{m_0} then both the curves have the same tangential direction at P. For, differentiating the equation C_{m_0} w.r.t. x results in

$$F_x + F_y \frac{dy}{dx} = 0.$$

On the other hand, differentiating the envelope equation (B.4) w.r.t. x yields

$$F_x + F_y \frac{dy}{dx} + \frac{\partial F}{\partial m} G_x + \frac{\partial F}{\partial m} G_y \frac{dy}{dx} = 0.$$

Since $\frac{\partial F}{\partial m}(x, y, m_0) = 0$ for (x, y) on the envelope, the last equation reduces to

$$F_x + F_y \frac{dy}{dx} = 0.$$

Thus the envelope touches each member of the family tangentially.

Example B.3. The envelope of the family of straight lines

$$F(x,y;m) \equiv y - mx - \frac{a}{m} = 0$$

is the parabola $y^2 = 4ax$.

B.2 • Envelopes in three dimensions

Consider the following family of surfaces given by

$$S_{\lambda}: \quad z = G(x, y; \lambda)$$
 (B.5)

where λ is the parameter. Keeping x, y, z fixed, differentiate $z = G(x, y; \lambda)$ w.r.t. λ to get

$$0 = G_{\lambda}(x, y; \lambda). \tag{B.6}$$

Suppose for a fixed λ , C_{λ} is the curve of intersection of the surfaces given by (B.5)-(B.6). The envelope of the family (B.5) is the union of C_{λ} for all λ . If we can solve for λ from equation (B.6) in terms of x and y as

$$\lambda = g(x, y), \tag{B.7}$$

then the envelope is analytically represented by the equation

$$z = G(x, y, g(x, y)) \tag{B.8}$$

which is obtained by substituting for λ in the equation (B.5).

Remark B.4. (i) The envelope E of the family of surfaces (B.5) touches every member of (B.5) along C_{λ} i.e., the surface (B.8) touches surface (B.5) along C_{λ} . Suppose $(x,y,z) \in E$. Then (x,y,z) satisfies (B.5) and (B.6) for some λ . This implies that $(x,y,z) \in C_{\lambda}$ for some λ . Then (x,y,z) satisfies both the equations (B.5) and (B.6). In particular, $\lambda = g(x,y)$ and $(x,y,z) \in S_{\lambda}$.

Sivaji IIT Bombay

Exercises 195

(ii) The envelope and each member of the family S_λ have the same normal direction at every point on C_λ. In other words they have the same tangent plane at every point on C_λ. For, The normal to S_λ at (x, y, z) has direction-variables (G_x, G_y, -1). The normal to E at (x, y, z) has direction-variables (G_x+G_λg_x, G_y+G_λg_y, -1)=(G_x, G_y, -1). (since (x, y, z) ∈ C_λ implies G_λ = 0).

Example B.5. For $G(x, y, \lambda) \equiv ax + by + c + \lambda(a_1x + b_1y + c_1) = 0$, the envelope is the point of intersection of the lines

$$ax + by + c = 0$$
, $a_1x + b_1y + c_1 = 0$

Example B.6. For $G(x, y, \lambda) \equiv ax + by + cz + d + \lambda(a_1x + b_1y + c_1z + d_1) = 0$, the envelope is the point of intersection of the planes

$$ax + by + cz + d = 0$$
, $a_1x + b_1y + c_1z + d_1 = 0$

Exercises

2.1. Find the envelope of the family of lines given by $y = mx \pm a\sqrt{1 + m^2}$.

$$F(x,y;m) \equiv y - mx \pm a\sqrt{1 + m^2} = 0.$$

2.2. Direction numbers of the normal to the tangent plane $(\cos \beta, \sqrt{1 - \cos^2 \beta - \sin^2 \alpha}, \sin \alpha)$. Find the envelope of the family of planes given by

$$(\cos \beta)x + \sqrt{1 - \cos^2 \beta - \sin^2 \alpha}y + (\sin \alpha)z = 0$$

where α is a constant and β is a real parameter. (Answer: $(\tan^2 \alpha)z^2 = x^2 + y^2$.)

2.3. Find the envelope of

$$G(x, y, z, \lambda) \equiv \lambda x + \sqrt{1 - \lambda^2 - \mu^2} y + \mu z = 0$$

where μ is a constant and λ is a real parameter. (Answer: $(1-\mu^2)(x^2+y^2)-\mu^2z^2=0$.)

Question: Is an envelope of a family of planes always a cone? Answer is no. One can take a family of planes consisting of only one member, in which case envelope coincides with the given plane.

July 29, 2015 Sivaji