SUCCESSIVE DIFFERENTIATION

* **Introduction to topic :**

It is extension of differentiation of one variable function. Weightage for university exam: 08 Marks No. of lectures required to teach: 04 hrs

Definition of Successive differentiation: *

Consider. A one variable function, $(\mathbf{x} \text{ is independent variable and } \mathbf{y} \text{ depends on } \mathbf{x}.)$ $\mathbf{y} = \mathbf{f}(\mathbf{x})$

Here if we make any change in **x** there will be a related change in **y**. This change is called derivative of y w.r.t. x. denoted by f'(x) or y_1 or y' or dv called first order derivative of v w.r.t. x. dx

 $\mathbf{f''}(\mathbf{x}) = (\mathbf{f'}(\mathbf{x}))' = \frac{\mathbf{d}^2 \mathbf{y}}{\mathbf{d} \mathbf{x}^2} = \mathbf{y''} = \mathbf{y}_2$ is called second order derivative of \mathbf{y} w.r.t \mathbf{x} .

It gives rate of change in y_1 w.r.t. rate of change in x.

Similarly, \geq

 \triangleright

Third derivative of y is denoted by $y_3 \text{ or } f'''(x) \text{ or } \frac{d^3y}{dx^3}$ or y''' and

So on.....

(Above derivatives exist because, If $\mathbf{y} = \mathbf{f}(\mathbf{x})$, then $\mathbf{y}_1 = \mathbf{g}(\mathbf{x})$, where $\mathbf{g}(\mathbf{x})$ is some function of x depends on f(x)

Thus.

Derivatives of f(x) (or f) w.r.t. x are denoted by, f'(x), f''(x), f'''(x),, $f^{(n)}(x)$,....

Above process is called successive differentiation of f(x) w.r.t. x and f', \mathbf{f} ", \mathbf{f} "",...., $\mathbf{f}^{(n)}$ are called successive derivatives of \mathbf{f} .

$f^{(n)}(x)$ denotes n^{th} derivative of f.

\geq **Notations:**

Successive derivatives of y w.r.t. x are also denoted by,

- y₁,y₂,y₃,.....y_n,....or 1.
- $\frac{dy}{dx}, \frac{d^2y}{dx^2}, \frac{d^3y}{dx^3}, \dots, \frac{d^ny}{dx^n}, \dots, or$ 2.

 $f'(x), f''(x), f'''(x), \dots, f^{(n)}(x), \dots, or$ y', y'', y''',or 3.

4.

 $Dy, D^2y, D^3y, \dots, D^ny, \dots$ 5. Where **D** denotes **d** . dx

 \geq Value of nth derivative of $\mathbf{y} = \mathbf{f}(\mathbf{x})$ at $\mathbf{x} = \mathbf{a}$ is denoted by,

 $\mathbf{f}^{\mathbf{n}}(\mathbf{a}), \mathbf{y}_{\mathbf{n}}(\mathbf{a}), \mathbf{or}\left(\frac{d^{n}y}{dx^{n}}\right)$

(i.e. value can be obtained by just replacing \mathbf{x} with \mathbf{a} in $\mathbf{f}^{n}(\mathbf{x})$.)

* List of formulas (01) :

Sr	Function	n th derivative
no.		
01	$y = e^{ax}$	$y_n = a^n e^{ax}$
02	$y = b^{ax}$	$y_n = a^n b^{ax} (\log_e b)^n$
03	$y = (ax + b)^m$	(i) if m is integer greater than n or less than (-1) then, $y_n = m(m-1)(m-2)(m-n+1) a^n (ax + b)^{m-n}$ (ii) if m is less then n then, $y_n = 0$ (iii) if m = n then, $y_n = a^n n!$
		(iv) if m = -1 then , $y_n = \frac{(-1)^n n! a^n}{(ax + b)^{n+1}}$ (v) if m = -2 then , $y_n = \frac{(-1)^n (n+1)! a^n}{(ax + b)^{n+1}}$
04	$y = \log(ax + b)$	$y_{n} = \frac{(-1)^{n-1} (n-1)! a^{n}}{(ax+b)^{n}}$

* **Problems Based On Above Formulas :**

- 1. Obtain 5th derivative of e^{2x} . 2. Obtain 3rd derivative of 3^{5x}. 3. Obtain 4th derivative of $(2x + 3)^5$ 4. Obtain 4th derivative of $(2x + 3)^3$ 5. Obtain 4th derivative of $(2x + 3)^4$ 6. Obtain 4th derivative of 1

$$\overline{(2x+3)}$$

nth derivatives of reciprocal of polynomials (nth derivatives of functions which contain polynomials in denominators) :

Consider

*

$$y = \frac{ax+b}{cx^2+dx+e}$$
 or $y = \frac{1}{cx^2+dx+e}$

To find nth derivative of above kind function first obtain partial fractions of f(x)or y.

To get partial fractions:

 $\frac{1}{\mathbf{cx}^2 + \mathbf{dx} + \mathbf{e}}$ then first factorize $\mathbf{cx}^2 + \mathbf{dx} + \mathbf{e}$. If y =Let $(\mathbf{fx} + \mathbf{g})$. $(\mathbf{hx} + \mathbf{i})$ be factors then $\mathbf{y} = \underline{\mathbf{1}}$ $(\mathbf{fx} + \mathbf{g}) \cdot (\mathbf{hx} + \mathbf{i})$ Find **A** & **B** such that $\mathbf{y} = \underline{\mathbf{A}} + \underline{\mathbf{B}}$ $\mathbf{fx} + \mathbf{g} + \mathbf{hx} + \mathbf{i}$

obtain n^{th} derivatives of above fractions separately and add them, answer will give n^{th} derivative of **y**.

✤ <u>Note:</u>

If polynomial in denominator is of higher Degree then we will have more factors .(Do the same process for all the factors).

> If
$$\mathbf{y} = \frac{1}{(\mathbf{fx} + \mathbf{g})^2 \cdot (\mathbf{hx} + \mathbf{i})}$$
 then use factors $\mathbf{y} = \frac{\mathbf{A}}{(\mathbf{fx} + \mathbf{g})^2} + \frac{\mathbf{B}}{\mathbf{hx} + \mathbf{i}} + \frac{\mathbf{C}}{\mathbf{fx} + \mathbf{g}}$

Problems Based On Above Formulas & notes :

Obtain nth derivatives of followings:

(1)
$$\frac{1}{a^2 - x^2}$$
 (2) $\frac{ax + b}{cx + d}$ (3) $\frac{x}{(x-1)(x-2)(x-3)}$ (4) $\frac{x^2}{(x+2)(2x+3)}$ (5) $\frac{8x}{(x+2)(x-2)^2}$

(6)
$$x \log (\underline{x-1})$$
 (7) $\frac{1}{x^2+a^2}$ (8) $\frac{1}{x^2+x+1}$

✤ ASSIGNMENT (01) :

Obtain nth derivatives of followings:

List of formulas (02) :

Sr	Function	n th derivative
no.		
01	y = sin(ax + b)	$(i)y_n = a^n \sin(ax + b + n \pi/2)$
		(ii) if b =0, a =1 then y = sinx & $y_n = sin(x + n \pi/2)$
02	$y = \cos(ax + b)$	$(i)y_n = a^n \cos(ax + b + n \pi/2)$
		(ii) if b =0, a =1 then y =cosx & $y_n = cos(x + n \pi/2)$
03	$y = e^{ax} \sin(bx + c)$	(i) $y_n = r^n e^{ax} \sin(bx + c + n\Theta)$
		where $r = (a^2 + b^2)^{1/2}$
		$\Theta = \tan^{-1}(b/a)$
04	$y = e^{ax} \cos(bx + c)$	$(i)y_n = r^n e^{ax} \cos(bx + c + n\Theta)$
		where $r = (a^2 + b^2)^{1/2}$
		$\Theta = \tan^{-1}(b/a)$

* **Problems Based On Above Formulas :**

- Obtain 4th derivative of sin(3x+5).
 Obtain 3rd derivative of e^{2x} cos3x

Problems Based On Above Formulas : $\dot{\mathbf{v}}$

Obtain nth derivatives of followings:

(1) $\sin x \sin 2x$ (2) $\sin^2 x \cos^3 x$ (3) $\cos^4 x$ (4) $e^{2x} \cos x \sin^2 2x$

✤ ASSIGNMENT (02):

Obtain nth derivatives of followings:

(1) $\cos x \cos 2x \cos 3x$ (2) $\sin^4 x$ (3) $e^{-x} \cos^2 x \sin x$

Some Problems (Problems Of Special Type) Based On Above All (01& 02) formulas:

(1) For $y = \frac{x^3}{x^2 - 1}$, Show that, $\left(\frac{d^n y}{dx^n}\right)_{x=0} = \begin{cases} 0 & \text{if n is even} \\ (-n) & \text{if n is odd integer greater than 1} \end{cases}$ (2)

) If
$$y = \cosh 2x$$
, show that $y = 2^n \sinh x$

 $y_n = 2^n \sinh 2x$, when n is odd. = $2^n \cosh 2x$, when n is even.

(3) Find nth derivative of following:

(i)
$$\tan^{-1}\left(\frac{1-x}{1+x}\right)$$
 (ii) $\sin^{-1}\left(\frac{2x}{1+x^2}\right)$ (iii) $\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ (iv) $\tan^{-1}x$

(4) If u = sinnx + cosnx, show that

 $u_r = n^r \left[1 + (-1)^r \sin 2nx \right]^{\frac{1}{2}}$ where u_r denotes the rth derivative of u with respect to x.

(5) If
$$\mathbf{I}_n = \frac{d^n}{dx^n} (x^n \log x)$$
,

Prove that $\mathbf{I}_{n} = n \mathbf{I}_{n-1} + (n-1)!$, Hence show that

$$\mathbf{I}_{n} = n! (\log x + 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n})$$

Leibnitz's theorem(only statement):

If **y** = **u**.**v**,

where **u** & **v** are functions of x possessing derivatives of nth order then, $y_n = nC_0u_nv + nC_1u_{n-1}v_1 + nC_2u_{n-2}v_2 + \dots + nC_ru_{n-r}v_r + \dots + nC_nuv_n$

where, $\mathbf{nCr} = \underline{\mathbf{n!}}$ $\mathbf{r!}(\mathbf{n-r})!$

Properties:

nCr = nCn-r
 nC₀ = 1 = nCn
 nC₁ = n = nCn-1

* <u>Note:</u>

Generally we can take any function as u and any as v.(If y = u .v) But take v as the function whose derivative becomes zero after some order.

Problems Based On Leibnitz's theorem:

Obtain nth derivatives of followings:

(1)
$$x^{3} \log x$$
 (2) $x^{n} = (3) x^{2} e^{x} \cos x$
 $x + 1$

✤ ASSIGNMENT (03):

Obtain nth derivatives of followings (using Leibnitz's theorem):

(1) $x^2 \log x$ (2) $x^2 e^x$ (3) $x \tan^{-1} x$.

Solved Problems (Problems Of Special Type) Based On Leibnitz's theorem:

- (1) If $y = \sin(m\sin^{-1}x)$ Then prove, $(1-x^2)y_{n+2}-(2n+1)xy_{n+1}+(m^2-n^2)y_n = 0$
- (2) If $y = \cot^{-1}x$, Then prove, $(1+x^2)y_{n+2}+2(n+1)xy_{n+1}+n(n+1)y_n = 0$
- (3) If $y^{1/m} + y^{-1/m} = 2x$ Then prove, $(x^2-1)y_{n+2}+(2n+1)xy_{n+1}+(n^2-m^2)y_n = 0$

✤ ASSIGNMENT (04) :

(1) If
$$\cos^{-1}\left(\frac{y}{b}\right) = \log\left(\frac{x}{n}\right)^n$$
 then prove, $x^2y_{n+2+}(2n+1)xy_{n+1}+2n^2y_n = 0$
(2) If $y = (x^2-1)^n$ then prove, $(x^2-1)y_{n+2}+2xy_{n+1}-n(n+1)y_n = 0$
(3) If $y = \tan^{-1}\left(\frac{a+x}{a-x}\right)$ then prove, $(a^2+x^2)y_{n+2}+2(n+1)xy_{n+1}+n(n+1)y_n$.