SUCCESSIVE DIFFERENTIATION

* Introduction to topic :

It is extension of differentiation of one variable function.
Weightage for university exam: 08 Marks
No. of lectures required to teach: 04 hrs

* Definition of Successive differentiation:

Consider,
A one variable function,
$\mathbf{y}=\mathbf{f}(\mathbf{x}) \quad(\mathbf{x}$ is independent variable and \mathbf{y} depends on \mathbf{x}.
Here if we make any change in \mathbf{x} there will be a related change in \mathbf{y}.
This change is called derivative of \mathbf{y} w.r.t. \mathbf{x}. denoted by $\mathbf{f}^{\prime}(\mathbf{x})$ or \mathbf{y}_{1} or \mathbf{y}^{\prime} or $\underline{d y}$ called first order derivative of \mathbf{y} w.r.t. \mathbf{x}. dx
$\mathbf{f}^{\prime}(\mathbf{x})=\left(\mathbf{f}^{\prime}(\mathbf{x})\right)^{\prime}=\frac{\mathbf{d}^{2} \mathbf{y}}{\mathbf{d x}^{2}}=\mathbf{y}^{\prime \prime}=\mathbf{y}_{2}$ is called second order derivative of \mathbf{y} w.r.t \mathbf{x}.
It gives rate of change in \mathbf{y}_{1} w.r.t. rate of change in \mathbf{x}.
$>\quad$ Similarly,
Third derivative of \mathbf{y} is denoted by $\mathbf{y}_{3} \underline{\text { or }} \mathbf{f}$ "' (x) or $\frac{\mathbf{d}^{3} \mathbf{y}}{\mathbf{d x}^{3}}$ or $\mathbf{y}^{\prime \prime \prime}$ and
So on
(Above derivatives exist because, If $\mathbf{y}=\mathbf{f}(\mathbf{x})$, then $\mathbf{y}_{\mathbf{1}}=\mathbf{g}(\mathbf{x})$, where $\mathbf{g}(\mathbf{x})$ is some function of \mathbf{x} depends on $\mathbf{f}(\mathbf{x})$
for e.g. if $\mathbf{y}=\boldsymbol{\operatorname { s i n }} \mathbf{x}$ then $\mathbf{y}_{\mathbf{1}}=\boldsymbol{\operatorname { c o s } x}$, hence $\mathbf{y}_{\mathbf{2}}=\boldsymbol{- s i n} \mathbf{x}$ and so on..........)
Thus,
Derivatives of $\mathbf{f}(\mathbf{x})(\mathbf{o r} \mathbf{f})$ w.r.t. x are denoted by, $\mathbf{f}^{\prime}(\mathbf{x}), \mathbf{f}{ }^{\prime}(\mathbf{x}), \mathbf{f}{ }^{\prime \prime}(\mathbf{x})$, $\ldots, f^{(n)}(x), \ldots$.
Above process is called successive differentiation of $\mathbf{f}(\mathbf{x})$ w.r.t. \mathbf{x} and \mathbf{f}, \mathbf{f}, $, \mathbf{\prime},, \ldots \mathbf{f}^{(\mathbf{n})}$ are called successive derivatives of \mathbf{f}.
$>\quad f^{(n)}(x)$ denotes $n^{\text {th }}$ derivative of f.

Notations:

Successive derivatives of \mathbf{y} w.r.t. \mathbf{x} are also denoted by,

1. $y_{1}, y_{2}, y_{3}, \ldots \ldots . . . y_{n}, \ldots \ldots$. or
2. $\frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}, \frac{d^{3} y}{d x^{3}}, \ldots \ldots \frac{d^{n} y}{d x^{n}}, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$
3. $f^{\prime}(x), f^{\prime \prime}(x), f^{\prime \prime}(x), \ldots \ldots ., f^{(n)}(x), \ldots \ldots \ldots . . .$. or

4. Dy, $D^{2} y, D^{3} y, \ldots \ldots \ldots \ldots . . D^{n} y, \ldots \ldots \ldots \ldots .$.

Where \mathbf{D} denotes $\underline{\mathbf{d}}$

Value of nth derivative of $\mathbf{y}=\mathbf{f}(\mathbf{x})$ at $\mathbf{x}=\mathbf{a}$ is denoted by ,
$\mathbf{f}^{\mathbf{n}}(\mathbf{a}), \mathbf{y}_{\mathbf{n}}(\mathbf{a})$, or $\left(\frac{\mathrm{d}^{\mathrm{n}} \mathrm{y}}{\mathrm{dx}^{\mathrm{n}}}\right)_{x=}$
(i.e. value can be obtained by just replacing \mathbf{x} with \mathbf{a} in $\mathbf{f}^{\mathbf{n}}(\mathbf{x})$.)

* List of formulas (01) :

$\begin{gathered} \text { Sr } \\ \text { no. } \end{gathered}$	Function	$n^{\text {th }}$ derivative
01	$y=e^{\text {ax }}$	$y_{n}=a^{n} e^{a x}$
02	$\mathrm{y}=\mathrm{b}^{\mathrm{ax}}$	$y_{n}=a^{n} b^{\text {ax }}\left(\log _{e} b\right)^{n}$
03	$y=(a x+b)^{m}$	(i) if m is integer greater than n or less than (-1) then, $y_{n}=m(m-1)(m-2) \ldots . .(m-n+1) a^{n}(a x+b)^{m-n}$
		(ii) if m is less then n then, $y_{n}=0$
		(iii) if $\mathrm{m}=\mathrm{n}$ then, $\mathrm{y}_{\mathrm{n}}=\mathrm{a}^{\mathrm{n}} \mathrm{n}$!
		(iv) if $m=-1$ then, $y_{n}=\frac{(-1)^{n} n!a^{n}}{(a x+b)^{n+1}}$
		(v) if $\mathrm{m}=-2$ then, $\mathrm{y}_{\mathrm{n}}=\frac{(-1)^{\mathrm{n}}(\mathrm{n}+1)!\mathrm{a}^{\mathrm{n}}}{(\mathrm{ax}+\mathrm{b})^{\mathrm{n}+1}}$
04	$y=\log (a x+b)$	$\mathrm{y}_{\mathrm{n}}=\frac{(-1)^{\mathrm{n}-1}(\mathrm{n}-1)!\mathrm{a}^{\mathrm{n}}}{(\mathrm{ax}+\mathrm{b})^{\mathrm{n}}}$

* Problems Based On Above Formulas :

1. Obtain $5^{\text {th }}$ derivative of $\mathrm{e}^{2 \mathrm{x}}$.
2. Obtain $3^{\text {rd }}$ derivative of $3^{5 x}$.
3. Obtain $4^{\text {th }}$ derivative of $(2 x+3)^{5}$
4. Obtain $4^{\text {th }}$ derivative of $(2 x+3)^{3}$
5. Obtain $4^{\text {th }}$ derivative of $(2 x+3)^{4}$
6. Obtain $4^{\text {th }}$ derivative of $\frac{1}{(2 x+3)}$

* $\quad n^{\text {th }}$ derivatives of reciprocal of polynomials ($\mathbf{n}^{\text {th }}$ derivatives of functions which contain polynomials in denominators) :

Consider

$$
y=\frac{a x+b}{c x^{2}+d x+e} \quad \text { or } \quad y=\quad \frac{1}{c x^{2}+d x+e}
$$

To find nth derivative of above kind function first obtain partial fractions of $\mathbf{f}(\mathbf{x})$ or \mathbf{y}.
To get partial fractions:
If $\mathbf{y}=\frac{\mathbf{1}}{\mathbf{c} \mathbf{x}^{2}+\mathbf{d x}+\mathbf{e}} \quad$ then first factorize $\mathbf{c x}^{2}+\mathbf{d x}+\mathbf{e}$.
Let $(\mathbf{f x}+\mathbf{g}) .(\mathbf{h x}+\mathbf{i})$ be factors then $\mathbf{y}=\frac{\mathbf{1}}{(\mathbf{f} \mathbf{x}+\mathbf{g}) .(\mathbf{h x}+\mathbf{i})}$
Find $\mathbf{A} \& \mathbf{B}$ such that $\mathbf{y}=-\frac{\mathbf{A}}{\mathbf{f x}+\mathbf{g}}+\frac{\mathbf{B}}{\mathbf{h x}+\mathbf{i}}$
obtain $n^{\text {th }}$ derivatives of above fractions separately and add them, answer will give $\mathrm{n}^{\text {th }}$ derivative of \mathbf{y}.

* \quad Note:

If polynomial in denominator is of higher Degree then we will have more factors .(Do the same process for all the factors).
$>$ If $\mathbf{y}=\frac{\mathbf{1}}{(\mathbf{f} \mathbf{x}+\mathbf{g})^{2} \cdot(\mathbf{h x}+\mathbf{i})}$ then use factors $\mathbf{y}=\frac{\mathbf{A}}{(\mathbf{f x}+\mathbf{g})^{2}}+\frac{\mathbf{B}}{\mathbf{h x}+\mathbf{i}}+\frac{\mathbf{C}}{\mathbf{f x}+\mathbf{g}}$

\& Problems Based On Above Formulas \& notes :

Obtain $\mathrm{n}^{\text {th }}$ derivatives of followings:
(1) $\frac{1}{a^{2}-x^{2}}$
(2) $\frac{a x+b}{c x+d}$
(3) $\frac{x}{(x-1)(x-2)(x-3)}$
(4) $\frac{x^{2}}{(x+2)(2 x+3)}$ (5) $\frac{8 x}{(x+2)(x-2)^{2}}$
(6) $x \log \frac{(x-1)}{(x+1)}$ (7) $\frac{1}{x^{2}+a^{2}}$ (8) $\frac{1}{x^{2}+x+1}$

* ASSIGNMENT (01) :

Obtain $\mathrm{n}^{\text {th }}$ derivatives of followings:
(1) $-\frac{a-x}{a+x}$
(2) $\frac{1}{(x-1)^{2}(x-2)}$
(3) $\frac{\mathrm{x}^{4}}{(\mathrm{x}-1)} \frac{(\mathrm{x}-2)}{(2)}$
(4) $\frac{x}{a^{2}+x^{2}}$

* List of formulas (02) :

$\mathbf{S r}$ no.	Function	$n^{\text {th }}$ derivative
01	$y=\sin (a x+b)$	(i) $\mathrm{y}_{\mathrm{n}}=\mathrm{a}^{\mathrm{n}} \sin (\mathrm{ax}+\mathrm{b}+\mathrm{n} \pi / 2)$ (ii)if $b=0, a=1$ then $y=\sin x \& y_{n}=\sin (x+n \pi / 2)$
02	$y=\cos (\mathrm{ax}+\mathrm{b})$	(i) $y_{n}=a^{n} \cos (a x+b+n \pi / 2)$ (ii)if $b=0, a=1$ then $y=\cos x \& y_{n}=\cos (x+n \pi / 2)$
03	$y=e^{a x} \sin (b x+c)$	$\begin{aligned} & \text { (i) } \mathrm{y}_{\mathrm{n}}=\mathrm{r}^{\mathrm{n}} e^{a x} \sin (\mathrm{bx}+\mathrm{c}+\mathrm{n} \Theta) \\ & \text { where } \mathrm{r}=\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)^{1 / 2} \\ & \Theta=\tan ^{-1}(\mathrm{~b} / \mathrm{a}) \end{aligned}$
04	$y=e^{a x} \cos (b x+c)$	$\begin{aligned} & \text { (i) } \mathrm{y}_{\mathrm{n}}=\mathrm{r}^{\mathrm{n}} e^{a x} \cos (\mathrm{bx}+\mathrm{c}+\mathrm{n} \Theta) \\ & \text { where } \mathrm{r}=\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)^{1 / 2} \\ & \Theta=\tan ^{-1}(\mathrm{~b} / \mathrm{a}) \end{aligned}$

1. Obtain $4^{\text {th }}$ derivative of $\sin (3 x+5)$.
2. Obtain $3^{\text {rd }}$ derivative of $\mathrm{e}^{2 \mathrm{x}} \cos 3 \mathrm{x}$

* Problems Based On Above Formulas :

Obtain $\mathrm{n}^{\text {th }}$ derivatives of followings:
(1) $\sin x \sin 2 x$
(2) $\sin ^{2} x \cos ^{3} x$
(3) $\cos ^{4} x$
(4) $e^{2 x} \cos x \sin ^{2} 2 x$

* ASSIGNMENT (02) :

Obtain $\mathrm{n}^{\text {th }}$ derivatives of followings:
(1) $\cos x \cos 2 x \cos 3 x$
(2) $\sin ^{4} x$
(3) $e^{-x} \cos ^{2} x \sin x$

* Some Problems (Problems Of Special Type) Based On Above All

 (01\& 02) formulas:(1) For $y=\frac{x^{3}}{x^{2}-1}$,

Show that, $\quad\left(\frac{d^{n} y}{d x x^{n}}\right)_{x=0}=\left\{\begin{array}{cc}0 & \text { if } \mathrm{n} \text { is even } \\ (-\mathrm{n}) & \text { if } \mathrm{n} \text { is odd integer greater than } 1\end{array}\right.$
(2) If $y=\cosh 2 x$, show that

$$
\begin{aligned}
\mathrm{y}_{\mathrm{n}} & =2^{\mathrm{n}} \sinh 2 \mathrm{x}, \text { when } \mathrm{n} \text { is odd. } \\
& =2^{\mathrm{n}} \cosh 2 \mathrm{x}, \text { when } \mathrm{n} \text { is even. }
\end{aligned}
$$

(3) Find $\mathrm{n}^{\text {th }}$ derivative of following:
(i) $\tan ^{-1}\left(\frac{1-\mathrm{x}}{1+\mathrm{x}}\right)$ (ii) $\sin ^{-1}\left(\frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}\right)$
(iii) $\cos ^{-1}\left(\frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}\right)$
(iv) $\tan ^{-1} x$
(4) If $u=\sin n x+\cos n x$, show that
$\mathrm{u}_{\mathrm{r}}=\mathrm{n}^{\mathrm{r}}\left[1+(-1)^{r} \sin 2 \mathrm{nx}\right]^{\frac{1}{2}}$
where u_{r} denotes the $r^{\text {th }}$ derivative of u with respect to x.
(5) If $\mathbf{I}_{\mathrm{n}}=\frac{\mathrm{d}^{\mathrm{n}}}{\mathrm{dx}^{\mathrm{n}}}\left(\mathrm{x}^{\mathrm{n}} \log \mathrm{x}\right)$,

Prove that $\mathbf{I}_{\mathbf{n}}=\mathrm{n}_{\mathrm{n}-1}+(\mathrm{n}-1)$!,
Hence show that

$$
\mathbf{I}_{\mathrm{n}}=\mathrm{n}!\left(\log \mathrm{x}+1+\frac{1}{2}+\frac{1}{3}+\ldots \ldots \ldots+\frac{1}{\mathrm{n}}\right)
$$

* Leibnitz's theorem(only statement):

If $\mathbf{y}=\mathbf{u} . \mathbf{v}$,
where $\mathbf{u} \& \mathbf{v}$ are functions of x possessing derivatives of $n t h$ order then,

where, $\mathbf{n C r}=\frac{\mathbf{n !}}{\mathbf{r !}(\mathbf{n} \mathbf{- r})!}$
Properties:

1) $\mathbf{n C r}=\mathbf{n C n}-\mathbf{r}$
2) $\mathrm{nC}_{0}=1=\mathrm{nCn}$
3) $\mathrm{nC}_{1}=\mathbf{n}=\mathbf{n C n}-1$

* Note:

Generally we can take any function as u and any as v.(If $y=u . v$)
But take v as the function whose derivative becomes zero after some order.

\& Problems Based On Leibnitz's theorem:

Obtain $\mathrm{n}^{\text {th }}$ derivatives of followings:
(1) $x^{3} \log x$
(2) $\frac{x^{n}}{x+1}$
(3) $x^{2} e^{x} \cos x$

* ASSIGNMENT (03) :

Obtain $\mathrm{n}^{\text {th }}$ derivatives of followings (using Leibnitz's theorem):
(1) $x^{2} \log x$
(2) $x^{2} e^{x}$
(3) $x \tan ^{-1} x$.

* Solved Problems (Problems Of Special Type) Based On Leibnitz's theorem:

(1) If $y=\sin \left(m \sin ^{-1} x\right)$

Then prove, $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}+\left(m^{2}-n^{2}\right) y_{n}=0$
(2) If $y=\cot ^{-1} x$,

Then prove, $\left(1+\mathrm{x}^{2}\right) \mathrm{y}_{\mathrm{n}+2}+2(\mathrm{n}+1) \mathrm{xy}_{\mathrm{n}+1}+\mathrm{n}(\mathrm{n}+1) \mathrm{y}_{\mathrm{n}}=0$
(3) If $y^{1 / m}+y^{-1 / m}=2 x$

Then prove, $\left(x^{2}-1\right) y_{n+2}+(2 n+1) x y_{n+1}+\left(n^{2}-m^{2}\right) y_{n}=0$

* ASSIGNMENT (04) :

(1) If $\cos ^{-1}\left(\frac{y}{b}\right)=\log \left(\frac{x}{n}\right)^{n}$ then prove, $\mathrm{x}^{2} \mathrm{y}_{\mathrm{n}+2+}(2 \mathrm{n}+1) \mathrm{xy}_{\mathrm{n}+1}+2 \mathrm{n}^{2} \mathrm{y}_{\mathrm{n}}=0$
(2) If $\mathrm{y}=\left(\mathrm{x}^{2}-1\right)^{\mathrm{n}} \quad$ then prove, $\left(\mathrm{x}^{2}-1\right) \mathrm{y}_{\mathrm{n}+2}+2 \mathrm{xy}_{\mathrm{n}+1}-\mathrm{n}(\mathrm{n}+1) \mathrm{y}_{\mathrm{n}}=0$
(3) If $\mathrm{y}=\tan ^{-1}\left(\frac{a+x}{a-x}\right) \quad$ then prove, $\left(\mathrm{a}^{2}+\mathrm{x}^{2}\right) \mathrm{y}_{\mathrm{n}+2}+2(\mathrm{n}+1) \mathrm{xy}_{\mathrm{n}+1}+\mathrm{n}(\mathrm{n}+1) \mathrm{y}_{\mathrm{n}}$.

