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TAYLOR’S THEOREM

We now look at a result which allows us to compute the values of elementary
functions like sin, exp and log. This theorem can be used to approximate
these functions by polynomials (which are easy to compute) and provides
an estimate of the error involved in the approximation.

Taylor’s Theorem. Let f be an (n + 1) times differentiable function on
an open interval containing the points a and x. Then

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + . . . +

f (n)(a)

n!
(x− a)n + Rn(x)

where

Rn(x) =
f (n+1)(c)

(n + 1)!
(x− a)n+1

for some number c between a and x.

The function Tn defined by

Tn(x) = a0 + a1(x− a) + a2(x− a)2 + . . . + an(x− a)n where ar =
f (r)(a)

r!
,

is called the Taylor polynomial of degree n of f at a. This can be thought
of as a polynomial which approximates the function f in some interval
containing a. The error in the approximation is given by the remainder
term Rn(x). If we can show Rn(x) → 0 as n → ∞ then we get a sequence
of better and better approximations to f leading to a power series expansion

f(x) =
∞∑

n=0

f (n)(a)

n!
(x− a)n

which is known as the Taylor series for f . In general this series will
converge only for certain values of x determined by the radius of
convergence of the power series (see Note 17). When the Taylor polyno-
mials converge rapidly enough, they can be used to compute approximate
values of the function.
Connection with Mean Value Theorem.
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When n = 0, Taylor’s theorem reduces to the Mean Value Theorem which
is itself a consequence of Rolle’s theorem. A similar approach can be used
to prove Taylor’s theorem.

Proof of Taylor’s Theorem.
The remainder term is given by

Rn(x) = f(x)− f(a)− f ′(a)(x− a)− f ′′(a)

2!
(x− a)2− · · · − f (n)(a)

n!
(x− a)n.

Fix x and a. For t between x and a set

F (t) = f(x)− f(t)− f ′(t)(x− t)− f ′′(t)

2!
(x− t)2 − · · · − f (n)(t)

n!
(x− t)n,

so that F (a) = Rn(x). Then

F ′(t) = −f ′(t)− f ′′(t)(x− t) + f ′(t)− f ′′′(t)

2!
(x− t)2 + f ′′(t)(x− t)

− · · · − f (n+1)(t)

n!
(x− t)n +

f (n)(t)

(n− 1)!
(x− t)n−1

= −f (n+1)(t)

n!
(x− t)n.

Now defining

G(t) = F (t)−
(

x− t

x− a

)n+1

F (a),

we have G(a) = 0 and G(x) = F (x) = 0. Applying Rolle’s theorem to the
function G shows that there is a c between a and x with G′(c) = 0. Now

0 = G′(c) = F ′(c) + (n + 1)
(x− c)n

(x− a)n+1F (a)

= −f (n+1)(c)

n!
(x− c)n + (n + 1)

(x− c)n

(x− a)n+1F (a).

But F (a) = Rn(x) and rearranging the last equation gives

Rn(x) = F (a) =
f (n+1)(c)

(n + 1)!
(x− a)n+1. �

A useful consequence of Taylor’s theorem is the following generalization of
the second derivative test:
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nth derivative test for the nature of stationary points

Suppose that f has a stationary point at a and that f ′(a) = · · ·
= f (n−1)(a) = 0, while f (n)(a) 6= 0. If f (n) is continuous then

(1) if n is even and f (n)(a) > 0 then f has a local minimum at a,
(2) if n is even and f (n)(a) < 0 then f has a local maximum at a,
(3) if n is odd then f has a point of inflection at a.

To see why this is valid, note that if the first n− 1 derivatives all vanish at
a, then by Taylor’s theorem

f(x)− f(a) = Rn−1(a) =
f (n)(c)

n!
(x− a)n

for some c between x and a. When n is even, the term (x − a)n is always
positive. If f (n)(a) > 0 then f (n)(c) > 0 provided x (and therefore c) is
sufficiently close to a. Hence f(x) − f(a) > 0 for all x sufficiently close
to a, so there is a local minimum at a. A similar argument shows that if
f (n)(a) < 0 then we have a local maximum. If n is odd, then (x− a)n and
therefore f(x)− f(a) have opposite signs for x < a and x > a so there is a
point of inflection at a.

Maclaurin Series

Taking a = 0 in Taylor’s theorem gives us the expansion

f(x) = f(0) + f ′(0)x +
f ′′(0)

2!
x2 + . . . +

f (n)(0)

n!
xn + Rn(x),

where
Rn(x) =

f (n+1)(c)

(n + 1)!
xn+1.

for some number c between 0 and x. For those values of x for which
limn→∞ Rn(x) = 0, we then obtain the following power series expansion
for f which is known as the Maclaurin series of f :

Maclaurin Series of f(x)

f(x) =
∞∑

n=0

f (n)(0)

n!
xn

(Here f (0)(0) is defined to be f(0).)
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Basic (and important) Maclaurin series

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · =

∞∑
n=0

xn

n!
(x ∈ R)

sin x = x− x3

3!
+

x5

5!
− · · · =

∞∑
n=0

(−1)nx2n+1

(2n + 1)!
(x ∈ R)

cos x = 1− x2

2!
+

x4

4!
− · · · =

∞∑
n=0

(−1)nx2n

(2n)!
(x ∈ R)

(1 + x)a = 1 + ax +
a(a− 1)x2

2!
+ · · · =

∞∑
n=0

(
a

n

)
xn (|x| < 1)

where
(

a
n

)
= a(a− 1) . . . (a− (n− 1))/n! (a ∈ R)

log(1 + x) = x− x2

2
+

x3

3
− · · · =

∞∑
n=1

(−1)n+1xn

n
(|x| < 1)

− log(1− x) = x +
x2

2
+

x3

3
+ · · · =

∞∑
n=1

xn

n
(|x| < 1)

Example. The Maclaurin series expansion of the exponential function is
easy to find. If f(x) = ex then f (n)(x) = ex, so every f (n)(0) is 1, and

ex =
∞∑

n=0

xn

n!
.

To find the values of x for which this is valid, we need to consider the
remainder term (or use the Ratio Test alone; Note 17)

Rn(x) =
xn+1

(n + 1)!
f (n+1)(c) =

xn+1

(n + 1)!
ec

for some c between 0 and x. It follows from the Ratio Test that the series∑
(xn/n!) converges for any x and hence the sequence (xn/n!) converges to

0. Therefore Rn(x) → 0 for every x ∈ R, so the Maclaurin series expansion
is valid for every x.
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Example. To find the Maclaurin series of the sine function we need to find
its derivative of order n.

f(x) = sin x f(0) = 0
f ′(x) = cos x f ′(0) = 1
f ′′(x) = − sin x f ′′(0) = 0
f ′′′(x) = − cos x f ′′′(0) = −1
f (4)(x) = sin x f (4)(0) = 0

It follows that f (n)(0) = 0 if n is even, and alternates as 1,−1, 1,−1, . . . for
n = 1, 3, 5, 7, . . . . Hence the Maclaurin series expansion is

sin x = x− x3

3!
+

x5

5!
− · · ·

or sin x =
∞∑

n=0

(−1)nx2n+1

(2n + 1)!
.

To find values of x for which this is valid, we need to consider the remainder
term (or use the Ratio Test) which is given by

Rn(x) =
f (n+1)(c)

(n + 1)!
xn+1.

Now for each n, f (n+1)(c) is given by ± sin c or ± cos c. The values of the
sine and cosine functions always lie between −1 and 1, so

−xn+1

(n + 1)!
≤ Rn(x) ≤ xn+1

(n + 1)!
,

and since x(n+1)/(n+1)! → 0, we get Rn(x) → 0 by the Squeeze Rule. This
shows that the Maclaurin series expansion is valid for all x ∈ R.

ABSTRACT
Content definition, proof of Taylor’s Theorem, nth derivative test for stationary points, Maclaurin series,
basic Maclaurin series

In this Note, we look at a Theorem which plays a key role in mathematical analysis and in many other
areas such as numerical analysis. The well-known derivative test for maxima and minima of functions is
generalised and Maclaurin Series are introduced.
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