
Lengths of Plane Curves

For a general curve in a two-dimensional plane it is not clear exactly how to measure its
length. In everyday physical situations one can place a string on top of the curve, and then
measure the length of the string when it is straightened out, noting that the length of the
string is the same whether it is wound up or not. Unfortunately, we have no means of run-
ning a string over an arbtirary curve, one that we might not even be able to sketch. Instead,
we need to use the notion of approximation, and use a limit to make the approximation as
accurate as we would like. The simplest means of approximating a curve is using straight
line segments. As we increase the number of segments, they begin to hang closer and closer
to the curve, and in the limit that the number of segments approaches infinity, we find the
exact length of the curve.

Let L denote the length of a curve C, and correspondingly let ds represent the length of
a segment of infinitessimal length of the curve. If we sum up the lengths of all of these
infinitessimal pieces, then we will find the entire length of the curve. This is conveniently
expressed in integral notation as

L =

∫
C

ds

which can be interpreted as saying the length of a curve is given the sum of the length
of infinitessimal segments of the curve. Although this notation conveniently represents the
problem, it does not tell us how to find its solution. What we need to do is represent the
differential ds in terms of the variables x and y. If we draw a line segment between two
points of the curve, the length of the segment will be the hypotenuse of a triangle with sides
∆x and ∆y which represent the function’s change in the x and y coordinates. If we let ∆s
denote the length of the hypotenuse, using the Pythagorean theorem we find

(∆s)2 = (∆x)2 + (∆y)2

or
∆s =

√
(∆x)2 + (∆y)2

Next we note that as the lengths of ∆x and ∆y tend to 0, the length of the hypotenuse of
this triangle becomes an increasingly accurate estimate of the length of the change of the
curve. Thus, when we consider infinitessimal changes in x and y, we find that

ds =
√

dx2 + dy2

which gives us a means of representing ds in terms of known quantities. However, we are
still not yet finished. We now need a means of representing the differentials dx and dy. The
way we represent these quantities depends on the form the curve is represented in. If we
have a differentiable function y(x), then we can write

dy =
dy

dx
dx

and

ds =

√
dx2 +

(dy

dx

)2

dx2 =

√
1 +

(dy

dx

)2

dx



In order to find the length of the curve we would simply integrate over the appropriate
limits in x, so if we want to find the length of the function as x varies from a to b, we would
calculate

L =

∫
C

ds =

∫ b

a

√
1 +

(dy

dx

)2

dx

Similarly, if we had a differentiable function x(y) then we would represent

dx =
dx

dy
dy

and

ds =

√(dx

dy

)2

dy2 + dy2 =

√
1 +

(dx

dy

)2

dy

Then if we wanted to find the length as y varied from c to d, we would simply calculate

L =

∫
C

ds =

∫ d

c

√
1 +

(dx

dy

)2

dy

Finally, it is worth noting that the number of curves we can represent as functions y(x)
or x(y) is rather limited. By looking to parametrized curves we could greatly increase the
number of curves for which we can calculate the length.

Consider the following examples.

Example 1 Find the length of the curve y = x3/2 from 0 ≤ x ≤ 2.
Solution Here we have y as a function of x, so we want to represent ds in terms of x. We
find that

dy

dx
=

3

2
x1/2

so (dy

dx

)2

=
9

4
x

Now evaluating the appropriate integral

L =

∫ 2

0

√
1 +

9

4
xdx

which we solve through substitution, letting

u = 1 +
9

4
x

and

du =
9

4
dx or

4du

9
= dx



and so u(0) = 1 and u(2) = 1 + 9
2

= 11
2
. Thus,

L =

∫ 2

0

√
1 +

9

4
xdx =

4

9

∫ 11/2

1

√
udu =

8

27
u3/2

∣∣∣11/2

1
=

8

27
·
[(11

2

)3/2

− 1
]
≈ 3.5255

Example 2 Find the length of y = (x/2)2/3 from x = 0 to x = 2.
Solution When we find

dy

dx
=

2

3

(x

2

)−1/3

·
(1

2

)
=

1

3

(2

x

)1/3

we notice that this derivative does not exist for x = 0. In fact, this function grows without
bound as x → 0, which means that it is not Riemann integrable (only bounded functions are
Riemann integrable). Thus, we cannot directly calculate the length of this curve. However,
can alternative represent x as a function of y, and find

y =
(x

2

)2/3

y3/2 =
x

2
x = 2y3/2

which we have previously seen is differentiable. When x = 0 we have y = 0, and when
x = 2 we have y = 1, so our limits of integration will be for y from 0 to 1. Calculating the
derivative

dx

dy
= 2

(3

2

)
y1/2 = 3y1/2

and (dx

dy

)2

= 9y

Thus,

L =

∫ 1

0

√
1 + 9ydy =

1

9
· 2

3
(1 + 9y)3/2

∣∣∣1
0

=
2

27
(10
√

10− 1) ≈ 2.27

Example 3 Find the length of x = (y3/6) + 1/(2y) from y = 2 to y = 3.
Solution We begin by finding the derivative

dx

dy
=

y2

2
− 1

2y2

and (dx

dy

)2

=
1

4
(y4 − 2 + y−4)

Thus,

L =

∫ 3

2

√
1 +

1

4
(y4 − 2 + y−4)dy =

∫ 3

2

√
1

4
(y4 + 2 + y−4)dy =

1

2

∫ 3

2

√
(y2 + y−2)2dy

=
1

2

∫ 3

2

(y2 + y−2)dy =
1

2

[y3

3
− 1

y

∣∣∣3
2

=
1

2

[(27

3
− 1

3

)
−

(8

3
− 1

2

)]
=

13

4



The key to solving the above problem was the fact that

1 +
(dx

dy

)2

was a perfect square, so it canceled out with the square root. However, most curves do not
work out so nicely. Unfortunately, we cannot evaluate the vast majority of integrals that
arise in finding arc length, and most of them cannot be evaluated by hand. The following is
an example using an integral we cannot calculate.

Example 4 Find the circumference of the circle x2 + y2 = a2.
Solution This curve is not given by a single function, but two functions. In order to find
the circumference we could calculate the length of the cuves given by each function, but
alternatively we can simply exploit the symmetry of the two functions - they both have the
same length. If we find the length of one of the curves, we simply double it to find the
circumference of the circle. Here we have the choice of calculating the length as an integral
in x or y. First, let us write

y =
√

a2 − x2

so
dy

dx
= − 2x√

a2 − x2

and (dy

dx

)2

=
4x2

a2 − x2

Finally,

L =

∫ a

−a

√
1 +

4x2

a2 − x2
dx

which we do not how to evaluate, but we know the result is L = π.


