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We want to find a measure of how ‘curved’ a curve is. Since this ‘curvature’ should depend only
on the ‘shape’ of the curve, it should not be changed when the curve is reparametrized. Further,
the measure of curvature should agree with our intuition in simple special cases. Straight lines
themselves have zero curvature. Large circles should have smaller curvature than small circles
which bend more sharply.

The (signed) curvature of a curve parametrized by its arc length is the rate of change of direction
of the tangent vector. The absolute value of the curvature is a measure of how sharply the curve
bends. Curves which bend slowly, which are almost straight lines, will have small absolute curvature.
Curves which swing to the left have positive curvature and curves which swing to the right have
negative curvature. The curvature of the direction of a road will affect the maximum speed at
which vehicles can travel without skidding, and the curvature in the trajectory of an airplane will
affect whether the pilot will suffer “blackout” as a result of the g-forces involved.

In this lecture we will primarily look at the curvature of plane curves. The results will be
extended to space curves in the next lecture.

1 Curvature

To introduce the definition of curvature, we consider a unit-speed curve α(s), where s is the arc
length. The tangential angle φ is measured counterclockwise from the x-axis to the unit tangent
T = α̇(s), as shown below.

φ(s)

α(s)

x

The curvature κ of α is the rate of change in the direction of the tangent line at that point with
respect to arc length, that is,

κ =
dφ

ds
. (1)
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The absolute curvature of the curve at the point is the absolute value |κ|.
Since α has unit speed, T · T = 1. Differentiating this equation yields

Ṫ · T = 0.

The change of T (s) is orthogonal to the tangential direction, so it must be along the normal
direction. The curvature is also defined to measure the turning of T (s) along the direction of the
unit normal N(s) where T (s)×N(s) = 1. That is,

Ṫ =
dT

ds
= κN. (2)

T (s + ∆s)
T (s)

N(s)

T (s)

T (s + ∆s)

∆φ

We can easily derive one of the curvature defini-
tions (1) and (2) from the other. For instance, if we
start with (2), then

κ = Ṫ ·N

=
dT

ds
·N

= lim
∆s→0

T (s+∆s)− T (s)

∆s
·N

= lim
∆s→0

∆φ · ‖T‖

∆s

= lim
∆s→0

∆φ

∆s

=
dφ

ds
.

Example 1. Let us compute the curvature of the unit-speed circle

α(s) = r
(

cos
s

r
, sin

s

r

)

.

We obtain that

T = α̇(s) =
(

− sin
s

r
, cos

s

r

)

,

N =
(

− cos
s

r
,− sin

s

r

)

,

Ṫ = α̈(s) = −
1

r

(

cos
s

r
, sin

s

r

)

=
1

r
N.

Thus

κ(s) =
1

r
. cf. (2)

The curvature of a circle equals the inverse of its radius everywhere.

The next result shows that a unit-speed plane curve is essentially determined once we know its
curvature at every point on the curve. The meaning of ‘essentially’ here is ‘up to a rigid motion1

of R2’.
1A rigid motion consists of a rotation and a translation.
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Theorem 1 Let κ : (a, b) → R be an integrable function. Then there exists a unit-speed curve

α : (a, b) → R
2 whose curvature is κ. Furthermore, if α̃ : (a, b) → R

2 is any other unit-speed curve

with the same curvature function κ, there exists a rigid body motion that transforms α̃ into α.

Proof Fix s0 ∈ (a, b) and define, for any s ∈ (a, b),

φ(s) =

∫ s

s0

κ(u) du, cf. (1),

α(s) =

(
∫ s

s0

cosφ(t) dt,

∫ s

s0

sinφ(t) dt

)

.

Then, the tangent vector of α is

α̇(s) =
(

cosφ(s), sinφ(s)
)

,

which is a unit vector making an angle φ(s) with the x-axis. Thus α is unit speed, and has curvature

dφ

ds
=

d

ds

∫ s

s0

κ(u) du = κ(s).

For a proof of the second part, we refer to [3, p. 31].

The above theorem shows that we can find a plane curve with any given smooth function as
its signed curvature. But simple curvature can lead to complicated curves, as shown in the next
example.

Example 2. Let the signed curvature be κ(s) = s. Following the proof of Theorem 1, and taking s0 = 0,
we get

φ(s) =

∫ s

0

u du =
s2

2
,

α(s) =

(
∫ s

0

cos
s2

2
ds,

∫ s

0

sin
s2

2
ds

)

.

These integrals can only be evaluated numerically.2 The curve is drawn in the figure below.3

2They arise in the theory of diffraction of light, where they are called Fresnel’s integrals, and the curve is called
Cornu’s Spiral, although it was first considered by Euler.

3Taken from [3, p. 33].
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2 Radius of Curvature and Total Curvature

circle

center of
curvature

osculating 

curvature
radius of

1/κ

α(s)

When the curvature κ(s) > 0, the center of curvature lies
along the direction of N(s) at distance 1/κ from the point
α(s). When κ(s) < 0, the center of curvature lies along
the direction of −N(s) at distance −1/κ from α(s). In
either case, the center of curvature is located at

α(s) +
1

κ(s)
N(s).

Here, 1/|κ| is called the radius of curvature. The osculat-
ing circle, when κ 6= 0, is the circle at the center of curvature with radius 1/|κ|. It approximates
the curve locally up to the second order.

The total curvature over a closed interval [a, b] measures the rotation of the unit tangent T (s)
as s changes from a to b:

Φ(a, b) =

∫ b

a

κds

=

∫ b

a

dφ

ds
ds

=

∫ b

a

dφ

= φ(b)− φ(a).

If the total curvature over [a, b] is within [0, 2π], it has a closed form:

Φ(a, b) =







arccos
(

T (a) · T (b)
)

, if T (a)× T (b) ≥ 0;

2π − arccos
(

T (a) · T (b)
)

, otherwise.

When the tangent makes several full revolutions4 as s increases from a to b, the total curvature
cannot be determined just from T (a) and T (b).

T (b)

T (a)

T (a)

T (b)

α(b)

α(a)

total curvature θ

4For example, the curve is the Cornu’s Spiral.
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3 Inflection and Vertex

A point s on the curve α is a simple inflection, or an inflection, if the curvature κ(s) = 0 but
κ̇(s) 6= 0. Intuitively, a simple inflection is where the curve swing from the left of the tangent at
the point to its right or from the right of the tangent to its left; or in the case of simple closed
curve, it is where the closed curve α changes from convex to concave or from concave to convex.
In the figure below, the curve on the left has one simple inflection while the curve on the right has
six simple inflections.

inflection
simple

κ < 0

κ > 0

κ > 0

κ > 0

κ < 0 κ < 0

κ > 0

κ < 0

In general, a point s with κ(s) = κ̇(s) = · · · = κ(j−1)(s) = 0 and κ(j)(s) 6= 0 is an inflection

point of order j. A second order inflection point, also referred to as a point of simple undulation,
will not alter the convexity or concavity of its neighborhood on a simple closed curve.

A simple vertex, or a vertex, of a curve satisfies κ̇ = 0 but κ̈ 6= 0. Intuitively, a simplex vertex
is where the curvature attains a local minimum or maximum. For example, an ellipse has four
vertices, on its major and minor axes.

simple vertex

4 Curvature of an Arbitrary-Speed Curve

Let α(t) be a regular but not necessarily unit-speed curve. We obtain the unit tangent as T =
α̇/‖α̇‖ and the unit normal N as the counterclockwise rotation of T by π/2. Still denote by κ(t)
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the curvature function. Let α̃(s) be the unit-speed reparametrization of α, where s is an arc-length
function for α. Let T̃ = dα̃/ds be the unit tangent and κ̃(s) the curvature function under this
unit-speed parametrization. The curvature at a point is independent of any parametrization so
κ(t) = κ̃(s(t)). Also by definition T (t) = T̃ (s). Differentiate this equation and apply the chain
rule:

Ṫ (t) = ˙̃T (s) ·
ds

dt
. (3)

Since α̃(s) is unit-speed, we know that

˙̃T (s) = κ̃(s)Ñ(s).

Substitution of the function s in this equation yields

˙̃T (s) = κ̃
(

s(t)
)

Ñ
(

s(t)
)

= κ(t)N(t) (4)

by the definition of κ and N in the arbitrary-speed case. We know that ds/dt = ‖α̇(t)‖ from the
definition of arc length

s =

∫ t

t0

‖α̇(u)‖ du.

Denote by v = ‖α̇(t)‖ the speed function of α. Equations (3) and (4) combine to yield

Ṫ = κvN. (5)

Now let α(t) = (x(t), y(t)). Then

T = (ẋ, ẏ)/‖α̇(t)‖ = (ẋ, ẏ)
/

√

ẋ2 + ẏ2,

N = (−ẏ, ẋ)
/

√

ẋ2 + ẏ2.

Substituting these terms into (5) yields a formula for evaluating the curvature:

κ =
Ṫ ·N

v

=

(

(ẍ, ÿ)
√

ẋ2 + ẏ2
+

d

dt

(

1
√

ẋ2 + ẏ2

)

(ẋ, ẏ)

)

·
(−ẏ, ẋ)
√

ẋ2 + ẏ2

/

√

ẋ2 + ẏ2

=
ẋÿ − ẍẏ

(ẋ2 + ẏ2)
3

2

. (6)

We can write the formula simply as

κ =
α̇× α̈

‖α̇‖3
, (7)

by treating the cross product as a scalar. The denominator ‖α̇‖3 can be regarded as a correction
to differentiations of α when the curve is not unit-speed: division by ‖α̇‖ once for the velocity α̇, a
second time for the normal, and a third time for the acceleration α̈. When the curve is unit speed,
α̇ = T and α̈ = Ṫ = κN . The formula (7) becomes an identity under T ×N = 1.
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Example 3. Find the curvature of the curve α(t) = (t3 − t, t2). so we have

α̇(t) = (3t2 − 1, 2t),

α̈(t) = (6t, 2).

Therefore

κ =
ẋÿ − ẍẏ

(ẋ2 + ẏ2)3/2

=
(3t2 − 1) · 2− 2t · 6t
(

(3t2 − 1)2 + (2t)2
)3/2

= −
6t2 + 2

(9t4 − 2t2 + 1)3/2
.

Finally, let us derive the formula for the total curvature over [a, b]. Let α̃(s) be the unit-speed
parametrization of α, where s is the arc length function. Let ã and b̃ be the parameter values such
that

α̃(ã) = α(a) and α̃(b̃) = α(b).

Then the total curvature of α̃ over [ã, b̃] is given by

∫ b̃

ã

κ̃(s) ds.

Since ds/dt = ‖α̇(t)‖, we substitute t for s in the above equation and obtain the total curvature
formula:

Φ(a, b) =

∫ b

a

κ(t) ‖α̇(t)‖ dt.
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