
CHAPTER 1

Metric Spaces

1. Definition and examples

Metric spaces generalize and clarify the notion of distance in the real line. The

definitions will provide us with a useful tool for more general applications of the

notion of distance:

Definition 1.1. A metric space is given by a set X and a distance function d :

X ×X → R such that

i) (Positivity) For all x, y ∈ X

0 ≤ d(x, y) .

ii) (Non-degenerated) For all x, y ∈ X

0 = d(x, y) ⇔ x = y .

iii) (Symmetry) For all x, y ∈ X

d(x, y) = d(y, x)

iv) (Triangle inequality) For all x, y, z ∈ X

d(x, y) ≤ d(x, z) + d(z, y) .

Examples:

i) X = R, d(x, y) = |x− y|.
ii) X = R2 = R× R, x = (x1, x2), y = (y1, y2)

d1(x, y) = |x1 − y1|+ |x2 − y2| .

iii) X = R2, x = (x1, x2), y = (y1, y2)

d2(x, y) =
(
|x1 − y1|2 + |x2 − y2|2

) 1
2 .

iv) Let X = {p1, p2, p3} and

d(p1, p2) = d(p2, p1) = 1 ,

d(p1, p3) = d(p3, p1) = 2 ,

1



2 1. METRIC SPACES

d(p2, p3) = d(p3, p2) = 3 .

Can you find a triangle (p1, p2, p3) in the plane with these distances?

v) Let X = {p1, p2, p3} and

d(p1, p2) = d(p2, p1) = 1 ,

d(p1, p3) = d(p3, p1) = 2 ,

d(p2, p3) = d(p3, p2) = 4 .

Can you find a triangle (p1, p2, p3) in the plane with these distances?

vi) The French railway metric (Chicago suburb metric) on X = R2 is defined

as follows: Let x0 = (0, 0) be the origin, then

dSNCF (x, y) =



d2(x, y) if there exists a t ∈ R such that x1 = ty1

and x2 = ty2

d2(x, x0) + d2(x0, y) else

.

Exercise: Show that the railroad metric satisfies the triangle inequality.

It is by no means trivial to show that d2 satisfies the triangle inequality. In the

following we write 0 = (0, ..., 0) for the origin in Rn.

CS Lemma 1.2. Let x, y ∈ Rn, then

|
n∑

i=1

xiyi| ≤

(
n∑

i=1

|xi|2
) 1

2
(

n∑
i=1

|yi|2
) 1

2

Lemma 1.3. On Rn the metric

d2(x, y) =

(
n∑

i=1

|xi − yi|2
) 1

2

satisfies the triangle inequality.

Proof. Let x, y, z ∈ Rn. Then we deduce from Lemma
CS
1.2

d(x, y)2 =
n∑

i=1

|xi − yi|2 =
n∑

i=1

|(xi − zi)− (yi − zi)|2

=
n∑

i=1

|(xi − zi)|2 − 2
n∑

i=1

(xi − zi)(yi − zi) +
n∑

i=1

|yi − zi|2

≤ d(x, z)2 + 2d(x, y)d(y, z) + d(y, z)
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= (d(x, z) + d(y, z))2 .

Hence,

d(x, y) ≤ d(x, z) + d(y, z)

and the assertion is proved.

More examples:

(1) Let n be a prime number. On Z we define

ddn(x, y) = n−max{m∈N : nm divides x-y} .

The n-adic metric satisfies a stronger triangle inequality

ddn(x, y) ≤ max{ddn(x, z), ddn(z, y)} .

(2) Let 1 ≤ p < ∞. Then

dp(x, y) =

(
n∑

i=1

|xi − yi|p
) 1

p

defines a metric n Rn.

(3) For p = ∞
d∞(x, y) = max

i=1,..,n
|xi − yi|

also defines a metric on Rn.

Project 1: Let 1 < p, q < ∞ such that 1/p+1/q = 1. Show Minkowski’s inequality.

Mink (1.1) xy ≤ xp

p
+

yq

q

holds for all x, y > 0. Hint: the function f(x) = − ln x is convex on (0,∞).

Proof of the triangle inequality for dp. The triangle inequality for p =

1 is obvious. We will fist show

mink2 (1.2) |
n∑

i=1

xiyi| ≤

(
n∑

i=1

|xi|p
) 1

p
(

n∑
i=1

|yi|q
) 1

q

whenever 1
p

+ 1
q

= 1. Let t > 0. We first observe that

|
n∑

i=1

xiyi| =
n∑

i=1

|txi||t−1yi| ≤
n∑

i=1

1

p
|txi|p +

1

q
|t−1yi|q

=
tp

p

n∑
i=1

|xi|p +
t−q

q

n∑
i=1

|yi|q .
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What is best choice of t? Make

tp
n∑

i=1

|xi|p = t−q

n∑
i=1

|yi|q

i.e.

tp+q =

n∑
i=1

|yi|q

n∑
i=1

|xi|p
.

This yields

|
n∑

i=1

xiyi| ≤ tp
n∑

i=1

|xi|p =

(
n∑

i=1

|yi|q
) p

p+q

(
n∑

i=1

|xi|p
) p

p+q

n∑
i=1

|xi|p

=

(
n∑

i=1

|yi|q
) 1

q
(

n∑
i=1

|xi|p
)1− 1

q

Now, we proof the triangle inequality. Let x = (xi), (yi) and z = (zi) in Rd. Then

we apply (
mink2
1.2)

dp(x, y)p =
d∑

i=1

|xi − yi|p ≤
d∑

i=1

|xi − yi|p−1(|xi − zi|+ |zi − yi|)

≤
d∑

i=1

|xi − yi|p−1|xi − zi|+
d∑

i=1

|xi − yi|p−1|zi − yi|

≤

(
d∑

i=1

(|xi − yi|p−1)q

) 1
q

( d∑
i=1

|zi − xi|p
) 1

p

+

(
d∑

i=1

|zi − yi|p
) 1

p

 .

However, 1 = 1/p + 1/q implies p− 1 = p/q and thus q(p− 1) = p. Hence we get

dp(x, y)p ≤ dp(x, y)p−1(dp(x, z) + dp(z, y)) .

If x 6= y we may divide and deduce the assertion.
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2. Excursion: Convex functions

Definition 2.1. Let I be an interval. A function f : I → R is called convex if

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)

holds for all x, y ∈ I, 0 < λ < 1.

Lemma 2.2. Let f : [a, b] → R be continuous, differnetiable on (a, b) such that f ′ is

increasing. Then f is convex.

Proof. Let x ∈ [a, b]. We will show that

g(z) =
f(y + z)− f(y)

z

is monotone increasing on (0, b−x). Indeed, by the fundamental theorem and change

of variables we deduce for z1 < z2 and λ = z1

z2
(s = λt, ds = λdt

g(z1) =

z1∫
0

f ′(s)
ds

z1

=

z2∫
0

f ′(λt)
λdt

z1

=

z2∫
0

f ′(λt)
dt

z2

≤
z2∫

0

f ′(t)
dt

z2

= g(z2) .

Now, we fix y < x and u = λx + (1− λ)y = y + λ(x− y), z1 = λ(x− y), z2 = x− y.

Then, we get
f(y + z)− f(y)

λ(x− y)
≤ f(x)− f(y)

(x− y)
.

This implies

f(λx + (1− λ)y) ≤ f(y) + λ(f(x)− f(y)) = λf(x) + (1− λ)f(y) .

Proof of
Mink
1.1. Let x, y > 0. Since − ln x is convex we have

− ln(
1

p
xp +

1

q
yq) ≤ 1

p
(− ln xp) +

1

q
(− ln yq) .

This shows by the monotonicity of exp that

1

p
xp +

1

q
yq ≥ eln x+ln y = xy .

Minkowski’s inequality is proved.
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3. Continuous functions between metric spaces

Continuous functions ‘preserve’ properties of metric spaces and allow to describe

deformation of one metric space into another. There are three different (but equiv-

alent) ways of defining continuity, the ε-δ-criterion, the sequence criterion and the

topological criterion. Each of them is interesting in its own right.

Definition 3.1. Let (X, d) and (Y, d′) be metric spaces. A map f : X → Y is called

continuous if for every x ∈ X and ε > 0 there exists a δ > 0 such that

edelt (3.1) d(x, y) < δ =⇒ d′(f(x), f(y)) < ε .

Let us use the notation

B(x, δ) = {y : d(x, y) < δ} .

For a subset A ⊂ X, we also use the notation

f(A) = {f(x) : x ∈ A} .

Similarly, for B ⊂ Y

f−1(B) = {x ∈ X : f(x) ∈ B} .

Then (
edelt
3.1) means

f(B(x, δ)) ⊂ B(f(x), ε) .

Or in a very non-formal way

f maps small balls into small balls .

Our aim is to prove a criterion for continuity in terms of so called open sets. This

criterion illustrates simultaneously the role of open sets and its interaction with

continuity and has a genuinely geometric flavor.

Definition 3.2. A subset O of a metric space is called open if

∀x ∈ O : ∃δ > 0 : B(x, δ) ⊂ O .

Examples:

O = (−1, 1) , O = R , O = (−1, 1)× (−2, 2)

are open in R, (R2, d2) respectively.

Remark 3.3. The sets B(x, ε), x ∈ X, ε > 0 are open.

Proposition 3.4. Let (X, d), (Y, d′) be metric spaces and f : X → Y be a map. f

is contiuous iff f−1(O) is open for all open subsets O ⊂ Y .
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Proof. ⇒: We assume that f is continuous and O is open. Let x ∈ f−1(O),

i.e. f(x) ∈ O. Since O is open, there exists an ε > 0 such that B(f(x), ε) ⊂ O. By

continuity, there exists a δ > 0 such that

f(B(x, δ)) ⊂ B(f(x), ε) ⊂ O .

Therefore

B(x, δ) ⊂ f−1(O) .

Since x ∈ f−1(O) was arbitrary, we deduce that f−1(O) is open.

⇐: Let x ∈ X and ε > 0. Let us show that

B(f(x), ε)

is a on open subset of (Y, d′). Indeed, let y ∈ B(f(x), ε) define ε′ = ε− d′(y, f(x)).

Let z ∈ Y such that

d(z, y) < ε′

then

d(f(x), z) ≤ d(f(x), y) + d(y, z) < d(f(x), y) + ε− d′(y, f(x)) = ε .

Thus

B(y, ε− d′(f(x), y)) ⊂ B(f(x), ε) .

By the assumption, we see that f−1(B(f(x), ε)) is an open set. Since x ∈ f−1(B(f(x), ε)),

we can find a δ > 0 such that

B(x, δ) ⊂ f−1(B(f(x), ε)) .

Hence, for all x̃ with d(x, x̃) < δ, we have

d′(f(x), f(x̃)) < ε .

The assertion is proved.

Examples:

(1) Let (X, d) be a metric space and x0 ∈ X be a point , then f(x) = d(x, x0)

is continuous. Indeed, the triangle inequality implies

d(d(x, x0), d(d(y, 0)) = |d(x, x0)− d(y, x0)| ≤ d(x, y)

This easily implies the assertion.

(2) On Rn with the standard euclidean metric d = d2, the function f : Rn → Rn

defined by f(x) = d(x, 0)x is continuous.
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(3) (Exercise) The function f : R3 → R3, f(x) = (cos(x1), sin(x2), cos(x1)) is

continuous.

Definition 3.5. Let (X, d), (Y, d′) be a metric space. The space C(X, Y ) is the set

of all continuous functions from X to Y . Let x0 ∈ X be a point. Then

Cb(X, Y ) = {f : X → Y : f is continuous and sup
x∈X

d′(f(x), f(x0)) < ∞}

is the subset of bounded continuous functions.

Proposition 3.6. Let (X, d), (Y, d′) be metric spaces and x0 ∈ X. Then Cb(X, Y )

equipped with

d(f, g) = sup
x∈X

d′(f(x), g(x))

is a metric space.

Problem: Show that d is not well-defined on C(R, R).

Proof: d(f, g) = 0 if and only if f(x) = g(x) for all x ∈ X. This means f = g. Let

us show that d is well-defined. Indeed, if f, g ∈ Cb(X, Y ). Then

sup
x

d′(f(x), g(x)) ≤ sup
x

d′(f(x), f(x0)) + d′(f(x0), g(x0)) + d′(g(x0), g(x))

≤ sup
x

d′(f(x), f(x0)) + d′(f(x0), g(x0)) + sup
x

d(g(x0), g(x))

is finite. Let h be a third function and x ∈ X. Than

d′(f(x), g(x)) ≤ d′(f(x), h(x)) + d(h(x), g(x)) ≤ d(f, h) + d(h, g) .

Taking the supremum yields the assertion.

alg Proposition 3.7. Let (X, d) be a metric space. Then C(X, R) is closed under

(pointwise-) sums, products and multiplication with real numbers. (C(X, R) is an

algebra over R).

Remark 3.8. Let X = N and d(x, y) = 1 of x 6= y and d(x, y) = 0 for x = y. (This

is called the discrete metric). Then C(X, R) is an infinite dimensional vector space.

Proof of
alg
3.7. Let f, g ∈ C(X, R) be continuous and x ∈ X. Consider x′ ∈ X.

Then

fg(x)− fg(y) = f(x)g(x)− f(y)g(y) = (f(x)− f(y))g(x) + f(y)(g(x)− g(y))

= (f(x)− f(y))g(x) + f(x)(g(x)− g(y)) + (f(y)− f(x))(g(x)− g(y)) .

Let ε > 0 and ε̃ = min{ε, 1}. We may choose δ1 > 0 such that

d(f(x), f(y))(1 + |g(x)|) <
ε̃

3
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holds for all d(x, y) < δ1. Similarly, we may choose δ2 > 0 such that

d(g(x), g(y))(1 + |f(x)|) <
ε̃

3
.

Let δ = min(δ1, δ2) and d(x, y) < δ. Then we deduce that

d(fg(x), fg(y)) = |fg(x)− fg(y)| < ε̃

3
+

ε̃

3
+

ε̃2

9
< ε̃ ≤ ε .

Thus fg is again continuous. The other assertions are easier.

Corollary 3.9. The polynomials on R are continuous.

Lemma 3.10. Let 1 ≤ p ≤ ∞ and x, y ∈ Rn, then

1

n
1
p

dp(x, y) ≤ d∞(x, y) ≤ dp(x, y) .

Proof. The last inequality is obvious. For the first one, we consider x, y ∈ Rn

and 1 ≤ p < ∞, then by estimating every element in the sum against the maximum

dp(x, y)p =
n∑

i=1

|xi − yi|p ≤ n max{|xi − yi|p} .

Taking the p-th root, we deduce the assertion.

Corollary 3.11. Let 1 ≤ p, q ≤ ∞, then the identity map id : (Rn, dp) → (Rn, dq)

is continuous.

Proof. We have for all x ∈ Rn and ε > 0

Bdp(x,
ε

n
) ⊂ Bdq(x, ε) .

This easily implies the assertion.

Corollary 3.12. The metrics dp define the same open sets on Rn.

Definition 3.13. Let (X, d) be a metric space. We say that a sequence (xn) con-

verges to x if for all ε > 0 there exists n0 such that for n > n0 we have

d(xn, x0) < ε .

In this case we write

lim
n

xn = x

or more explicitly

d− lim
n

xn = x .

A sequence (xn) is convergent, if there exists x ∈ X with limn xn = x.
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Examples: d2 − limn
1
n

= 0, dd3 − limn 3n = 0. (What axioms of the natural

numbers are involved?).

Proposition 3.14. Let (X, d), (Y, d′) be metric spaces and f : X → Y be a map.

Then f is continuous if for every convergent sequence (xn) in X

lim
n

f(xn) = f(lim
n

xn) .

Proof: ⇒: Let x = limn xn and ε > 0, then there exists a δ > 0 such that

d(y, x) < δ ⇒ d′(f(y), f(x)) < ε .

Let n0 ∈ N be such that

d(xn, x) < δ

for all n > n0, then

d′(f(xn), f(x)) < ε

for all n > n0. Hence

lim
n

f(xn) = f(x) .

⇐ Let x ∈ X and assume in the contrary that

∃ε > 0 ∀δ > 0∃y : d(y, x) < δ and d′(f(x), f(y)) ≥ ε .

Applying these successively for all δ = 1
k
, we find a sequence (xk) such that

d(xk, x) <
1

k
and d′(f(xk), f(x)) ≥ ε′ .

and thus

lim
k

xk = x .

By assumption, we have

lim
k

f(xk) = f(x) .

Hence, there exists a k0 such that for all k > k0

d(f(xk), f(x)) < ε .

a contradiction.
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4. Complete metric spaces and completion

Complete metric space are crucial in understanding existence of solutions to many

equations. Complete spaces are also important in understanding spaces of inte-

grable functions. We will review basic properties here and show the existence of a

completion.

We will say that a sequence in a metric space is a Cauchy sequence of for every

ε > 0 there exists n0 ∈ N such that

d(xn, xm) < ε

for all n, m > n0.

Definition 4.1. A metric space (X, d) is called complete, if every Cauchy sequence

converges.

model Proposition 4.2. The space (R2, d1) is complete.

Proof: Let xn be a Cauchy sequence in (R2, d1). Then xn = (xn(1), xn(2)) is a

sequence of pairs.

Claim: The sequences (xn(1))n∈N and (xn(2))n∈N are Cauchy sequences.

Indeed, let ε > 0, then there exists an n0 such that

d1(xn, xm) < ε

for all n, m > n0. In particular, we have

|xn(1)− xm(1)| ≤ |xn(1)− xm(1)|+ |xn(2)− xm(2)| ≤ d1(xn, xm) < ε

for all n, m > n0 and

|xn(2)− xm(2)| ≤ |xn(1)− xm(1)|+ |xn(2)− xm(2)| ≤ d1(xn, xm) < ε .

Therefore, (xn(1)) and (xn(2)) are Cauchy.

Since R is complete, we can find x(1) and x(2) such that

lim
n

xn(1) = x(1) and lim
n

xn(2) = x(2) .

Claim: limn xn = (x(1), x(2)).

Indeed, Let ε > 0 and choose n1 such that

|xn(1)− x(1)| < ε

2

for all n > n1. Choose n2 such that

|xn(2)− x(2)| < ε

2
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for all n > n2. Set n0 = max{n1, n2}, then for every n > n0, we have

d1(xn, (x(1), x(2)) = |xn(1)− x(1)|+ |xn(2)− x(2)| < ε

Thus

lim
n

xn = x

and the assertion is proved.

Examples:

(1) Let X = R \ {0} and d(x, y) = |x − y|, them (X, d) is not complete. The

sequences ( 1
n
) is Cauchy and does not converge.

(2) Let p be a prime number. On the set of integers, we define

ddp(z, w) = p−n ,

where n = max{n : pn divides (z−w) }. This satisfies the triangle inequal-

ity. The sequence (xn) given by xn = p + p2 + · · ·+ pn is a non convergent

Cauchy sequence.

rncomp Theorem 4.3. Let n ∈ N. The space (Rn, d2) is a complete metric space.

Proof. Similar as in Proposition
model
4.2 using the following Lemma .

Lemma 4.4. Let x, y ∈ Rn, then

d2(x, y) ≤
n∑

i=1

|xi − yi| .

Proof. We proof this by induction on n ∈ N. The case n = 1 is obvious.

Assume the assertion is true for n and let x, y ∈ Rn+1. We define the element

z = (x1, ..., xn, yn+1), then we deduce from the triangle inequality

d2(x, y) ≤ d2(x, z) + d2(z, y)

=

(
n+1∑
i=1

|xi − zi|2
) 1

2

+

(
n+1∑
i=1

|zi − yi|2
) 1

2

= |xn+1 − yn+1|+

(
n∑

i=1

|xi − yi|2
) 1

2

.

To apply the induction hypothesis, we define x̃ = (x1, ..., xn) and ỹ = (y1, .., yn).

Then the induction hypothesis yields(
n∑

i=1

|xi − yi|2
) 1

2

= d2(x̃, ỹ) ≤
n∑

i=1

|xi − yi| .
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Hence,

d2(x, y) ≤ |xn+1 − yn+1|+

(
n∑

i=1

|xi − yi|2
) 1

2

≤ |xn − yn|+
n∑

i=1

|xi − yi|

=
n+1∑
i=1

|xi − yi| .

The assertion is proved.

Definition 4.5. A subset C ⊂ X is called closed if X \ C is open.

complete1 Proposition 4.6. Let C be closed subset of a complete metric space (X, d), then

(C, d|C×C) is complete.

Proof. Let (xn) ⊂ C be Cauchy sequence. Since X is complete, there exists

x ∈ X such that

x = lim
n

xn .

We have to show x ∈ C. Assume x /∈ C. Then there exists a δ > 0 such that

B(x, δ) ⊂ X \ C. By definition of the limit there exists n0 such that d(xn, x) < δ

for all n > n0. Set n = n0 + 1. Then d(xn, x) < δ implies xn ∈ X \ C and xn ∈ C

by definition. This contradiction finished the proof.

comp1 Theorem 4.7. Let (Y, d′) be complete metric space. Let h ∈ C(X, Y ) and

Ch(X, Y ) = {f ∈ C(X, Y ) : sup
x∈X

d′(f(x), h(x)) < ∞}

Then Cg(X,Y ) is complete with respect to

d(f, g) = sup
x∈X

d′(f(x), g(x)) .

Proof. Let (fn) ⊂ Ch(X, Y ) be Cauchy sequence. This means that for every

ε > 0 there exists an n0 such that

eqq (4.1) sup
x∈X

d′(fn(x), fm(x)) <
ε

2
.

In particular, for fixed x ∈ X, fn(x) is Cauchy. Therefore f(x) := limm fm(x) is a

well-defined element in Y . We fix n > n0 and consider m ≥ n0 such that

d′(fm(x), f(x)) ≤ ε

3
.
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This implies

d′(fn(x), f(x)) ≤ d′(fn(x), fm(x)) + d′(fm(x), f(x)) ≤ 5

6
ε

for all x ∈ X. In particular,

eqq2 (4.2) sup
n≥n0

sup
x∈X

d′(fn(x), f(x)) ≤ 5

6
ε .

Let us show that f is continuous. Let z ∈ X and ε > 0. Choose n0 according to (
eqq
4.1).

Choose n = n0 + 1. Let δ > 0 such that d(x, y) < δ implies d′(fn(x), fn(y)) < ε.

Then, we have

d′(f(x), f(y)) ≤ d′(f(x), fn(x)) + d′(fn(x), fn(y)) + d′(fn(y), f(y)) < 3ε .

Since ε > 0 is arbitrary, we see that f is continuous. Moreover, (
eqq2
4.2) implies that

fn converges to f . Finally, (
eqq2
4.2) for ε = 1 implies that

sup
x

d(f(x), h(x)) ≤ sup
x

d(f(x), fn(x)) + sup
x

d(fn(x), h(x)) < ∞

implies that f ∈ Ch(X, Y ).

Definition 4.8. Let (X, d) be a metric space and C ⊂ X. O ⊂ X is called sense if

for ever x ∈ C and ε > 0 B(x, ε) ∩O 6= ∅.

Definition 4.9. Let O ⊂ X be a subset. Then

Ō = ∩O⊂C,CclosedC

is called the closure.

dens Lemma 4.10. O is dense in Ō and Ō is closed.

Proof. Let x ∈ Ō. Assume B(x, ε) ∩ O = ∅. Then C = X \ B(x, ε) contains

O. Thus

Ō ⊂ C .

This implies that x /∈ Ō, a contradiction. Now, we show that Ō is closed. Indeed,

let y /∈ Ō. Then there has to be a closed set C such that O ⊂ C but y /∈ C. This

means y ∈ X \ C which is open. Hence there exists δ > 0 such that

B(y, δ) ⊂ X \ C

By definition every element z ∈ B(y, δ) does not belong to Ō. This means B(y, δ) ⊂
X \ Ō.
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comp2 Theorem 4.11. Let (X, d) be a non-empty metric space. For every x ∈ X we define

fx(y) = d(x, y) .

Let x0 ∈ X. The map f : X → Cfx0
(X, R) satisfies the following properties.

i) d(f(x), d(f(y)) = d(x, y),

(1) The closure C = f(X) is complete,

(2) f(X) is dense in the closure C = f(X).

Proof. Let x, y ∈ X and z ∈ X. Then the ‘converse triangle’ ineqquality

implies

|fx(z)− fy(z)| = |d(x, z)− d(y, z)| ≤ d(x, y) .

Moreover,

|fx(z)− fx(y)| = |d(x, z)− d(x, y)| ≤ d(z, y) .

Therefore fx ∈ Cfx0
(X, R) for every x ∈ X and

d(fx, fy) ≤ d(x, y) .

However,

d(fx, fy) ≥ |fx(x)− fy(x)| = |0− d(y, x)| = d(y, x) .

This shows i). According to Proposition
complete1
4.6 and Theorem

comp1
4.7, we see that C is

complete. According to Lemma
dens
4.10, we deduce that f(X) is dense in C.

Project: On C([0, 1]) we define

d1(f, g) =

∫
|f(s)− g(s)|ds .

Show that (C([0, 1]), d1) is not complete.

Project: In the literature you can find another description of the completion of a

metric space. Find it and describe it.

5. Unique extension of densely defined uniformly continuous functions

In this section we will show that the completion C constructed in Theorem
comp2
4.11 is

unique (in some sense). This is based on a simple observation-the unique extension.

This principle is very often used in analysis.

Definition 5.1. Let (X, d), (Y, d′) be metric spaces. A function f : X → Y is

called uniform continuous if for every ε > 0 there exists a δ > 0 such that

d(x, y) < δ ⇒ d′(f(x), f(y)) < ε .
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u-ext Proposition 5.2. Let O ⊂ C be a dense set and f : O → Y be uniformly contin-

uous function with values in a complete metric space. Then there exists a unique

continuous function f̃ : O → Y such that f̃(x) = f(x) for all x ∈ O.

Proof. Let x ∈ X. Since B(x, 1
n
)∩O is not empty, we may find (xn) ⊂ O such

that limn xn = x. We try to define

f̃(x) = lim
n

f(xn) .

Let us show that this is well-defined. So we consider another Cauchy sequence (x′n)

such that limn x′n = x. Let ε > 0. Then there exists δ > 0 such that

d′(f(x′, y)) < ε

holds for d(x′, y) < δ. We may find n0 such that

d(xn, x) <
δ

2

and

d(x′n, x) <
δ

2

holds for all n, n′ > n0. Thus

d′(f(x′n), f(xn)) < ε .

This argument also shows that (f(xn)) is Cauchy and hence f̃(x) is well-defined. If

x ∈ O, we may choose for (xn) the constant sequence xn = x and hence f̃(x) = f(x).

Now, we want to show that f̃ is uniformly continuous. Indeed, let ε > 0, then there

exists δ > 0 such that d(x′, y′) < δ implies

d(f(x′), f(y′)) <
ε

2
.

Given x, y ∈ C with d(x, y) < δ, we may find (xn) converging to x and (yn) con-

verging to y such that

d(xn, x) <
δ − d(x, y)

2
.

Thus for all n ∈ N we have

d(xn, yn) ≤ d(x, y) + d(xn, x) + d(yn, y) < δ .

This implies

d(f(x), f(y)) = lim
n

d(f(xn), f(yn)) <
ε

2
.
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This shows that f̃ is uniformly continuous. If g is another continuous function such

that g(x) = f(x) holds for elements x ∈ O, then we may choose a Cauchy sequence

(xn) converging to x and get

g(x) = lim
n

g(xn) = lim
n

f(xn) = f(x) .

Example If f : (0, 1] → R is uniformly continuous, then f is bounded (why).

f(x) = 1/x is not uniformly continuous.

Theorem 5.3. The completion of a metric space is unique. More precisely, let C be

the set constructed in Theorem
comp2
4.11. Let C ′ be a complete metric space and ι′ : X →

C ′ be uniformly continuous with uniformly continuous inverse ι′−1 : ι(X) → X such

that ι′(X) is dense. Then there is a bijective, bicontinuous map u : C → C ′ such

that u(ι(x)) = ι′(x).

Proof. The map ι′ι−1 : ι(X) → C ′ is uniformly continuous and hence admits

a unique continuous extension u : C → C ′. Also ιι′−1 : ι′(X) → C admits a

unique extension v : C ′ → C. Note that vu : C → C is an extension of the map

vu(ι(x)) = ι(x). Thus there is only one extension, namely the identity. This show

vu = id. Similarly uv = id. Thus v = u−1 and u is bijective and bi-continuous.

Project: Find the completion of (Z, d3).

6. A famous example

In this section we want to identify the completion of C([0, 1]) with respect to

d1(f, g) =

1∫
0

|f(t)− g(t)|dt .

We will also use the function

I(f) =

1∫
0

f(t)dt

defined by the Riemann integral.

Lemma 6.1. I is uniformly continuous.

Proof. It suffices to show that

|I(f)| ≤
∫
|f(t)|dt .
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(This implies that I is 1-Lipschitz, i.e.

|I(f)− I(g)| ≤ d1(f, g) .)

We define f+ = max{f, 0} and f− = max{−f, 0}. Then we have

I(f) = I(f+)− I(f−) ≤ I(f+) + I(f−) = I(|f |) =

∫
|f(t)|dt .

Similarly, we may show that

I(f) = I(f+)− I(f−) ≥ −I(f+)− I(f−) = −I(|f |) = −
∫
|f(t)|dt .

The assertion follows.

The characteristic function is given by

1A(x) =

1 if x ∈ A

0 if x /∈ A
.

Lemma 6.2. I(1[a,b]) = b− a.

Proof. We only consider [a, b] = [0, b]. For 2/n ≤ b we define

fn(t) =


nt if t ≤ 1

n

1 if 1
n
≤ t = b− 1

n

n(b− t)

.

Then we deduce that for m ≥ n we have

d1(fn, fm) = 2

1
m∫

0

mt dt +
1

n
− 1

m
−

1
n∫

0

ntdt = 2(
1

2m
+

1

n
− 1

m
− 1

2n
) =

1

n
− 1

m
.

Thus (fn) is Cauchy and

lim
n

∫
fn(t)dt = lim

n
b− 1

n
= b .

For general a we simply shift.

In the following we denote the length of an interval by

|[a, b]| = b− a .
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chy Lemma 6.3. Let f be a continuous positive function on [0, 1], λ > 0 and ε > 0.

Then there exists intervals J1, ...., Jm such that

{t : f(t) > λ} ⊂ J1 ∪ · · · Jk

and ∑
k

|Jk| ≤
1

λ− 2ε

∫
f(t)dt .

Proof. Let ε < λ
2
. Since f is uniformly continuous, we may find n ∈ N such

that |x− y| ≤ 1/n implies

|f(x)− f(y)| < ε .

We define xk = k/n. Let S = {k : f(xk) > λ−ε}. Let t ∈ [0, 1] such that f(t) > λ.

We consider k = btnc. Then xk − t ≤ 1
n

and hence

f(xk) > f(t)− ε > λ− ε .

Therefore

{t : f(t) > λ} ⊂
⋃
k∈S

[xk, xk+1] .

However, f(xk) > λ− ε implies f(t) > λ− 2ε for all t ∈ [xk, xk+1]. By the definition

of the lower sums we deduce

1∫
0

f(t)dt ≥
∑
k∈S

(λ− 2ε)|Jk| .

Since λ− 2ε > 0, we deduce the assertion.

Definition 6.4. i) A subset A ⊂ [0, 1] is said to have measure 0 if for every

ε > 0 there exists a sequence (Jk) of intervals such that

A ⊂
⋃
k

Jk and
∑

k

|Jk| < ε .

ii) A sequence (fn) converges almost everywhere (a.e.) to a function f if there

exists a set A of measure 0 such that

lim
n

fn(t) = f(t)

for all t ∈ Ac = [0, 1] \ A.

limit1 Proposition 6.5. Let (fn) be a d1-Cauchy sequence. Then there exists a subse-

quence (nk) and a function f such that fnk
converges to f a.e.
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Proof. We may choose (nk) such that

d1(fnk
, fnk+1

) ≤ 6−k .

Let us denote gk = fnk
. We apply Lemma

chy
6.3 to λ = 2−k and ε = 2−k−3−k

2
and find

intervals Jk
1 , ..., Jk

m(k) such that∑
l

|Jk
l | ≤

6−k

2−k − 2ε
= 2−k

and

{t ∈ [0, 1] : |gk(t)− gk+1(t)| > 2−k} ⊂
⋃

l

Jk
l .

We define

Ak =
⋃
n≥k

⋃
l

Jn
l

and

A =
⋂
k

Ak .

Then, we see that A ⊂ Ak and∑
n≥k

∑
l

|Jn
l | ≤

∑
n≥k

2−n = 21−k .

Thus shows that A has measure 0. For t /∈ A, we may find k such that for all n ≥ k

we have t /∈
⋃

l J
n
l . This implies

|gn(t)− gn+1(t)| ≤ 2−n

for all n ≥ k. In particular, (gk(t)) is Cauchy for all t ∈ Ac. We may define

f(t) =

limk gk(t) if t /∈ A

0 else
.

Then (gk) converges to f almost everywhere.

This leads us to define the set of possible limits.

L = {f : [0, 1] → R : ∃(fn) ⊂ C[0, 1], fn converges to f a.e.}

on L we define the equivalence relation f ∼ g if there exists a set A of measure 0

such that f1Ac = g1Ac .

Exercise: Show that ∼ is an equivalence relation.

We define

L = L/ ∼ .
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For a function f ∈ L we define the equivalence class [f ] = {g : g ∼ f}. In the

following we denote by X the completion of C[0, 1] with respect to the d1-metric.

Our main theorem is the following.

inj Theorem 6.6. There is an injective map ι : X → L such that

ι(x) = [f ]

holds whenever (fn) is a Cauchy sequence converging to x (with respect to d1) and

converging to f . a.e. Moreover, I can be extended to ι(X).

Problem: Give a description of ι(X1). This is done in the real analysis course

(441=540).

We need some more preparation.

uniqueext Lemma 6.7. Let A =
⋃

k Jk the union of intervals.

i) Let f ∈ C[0, 1], then f1A ∈ X, f1Ac ∈ X and

d1(f1A, g1A) ≤ d1(f, g)

and

d1(f1Ac , g1Ac) ≤ d1(f, g) .

ii) There is are continuous maps mA : X → X, mAc : X → X such that

mA(f) = f1A and mAc(f) = f1Ac for f ∈ C[0, 1].

iii) There is a Lipschitz map add : X ×X → X such that add(f, g) = f + g.

iv) add(mA(x), mAc(x)) = x for all x ∈ X.

v) d1(f1Ac , 0) ≤ supt∈Ac |f(t)|.

Proof. We will start with i) for A = [a, b]. We use the functions Let fn defined

for [0, b − a] and define gn(t) = fn(t − a). Then we see that for every f ∈ C[0, 1]

we have

d1(ffn, ffm) =

b∫
a

|f(t)(fn(t)− fm(t))|dt ≤ sup
t
|f(t)|d(fn, fm)

≤ sup
t
|f(t)|d1(fn, fm) ≤ sup

t
|f(t)| ( 1

n
− 1

m
) .

Thus (ffn) is Cauchy. We denote the limit by f1[a,b]. (Moreover, ffn converges

pointwise to f1[a,b].) Now, we observe that |fn(t)| ≤ 1 and hence

d1(f1[a,b], g1[a,b]) = lim
n

d1(ffn, gfn) = lim
n

1∫
0

|fn(t)(f(t)− g(t))|dt
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≤
1∫

0

|f(t)− g(t)|dt = d1(f, g) .

By Proposition
u-ext
5.2 we find a map uA : X → X such that uA(f) = f1A and

d1(uA(x), uA(y)) ≤ d1(x, y) .

Now, we will prove iii). The metric on X ×X is given by

d((x, y), (x′, y′)) = d1(x, x′) + d1(y, y′) .

Now, we consider add : C[0, 1] × C[0, 1] → C[0, 1] and want to show that add is

uniformly continuous. Indeed, elementary properties of the integral imply

d1(add(f, g), add(f ′, g′)) =

1∫
0

|(f + g)− (f ′ + g′)|dt

≤
1∫

0

|f − f ′|dt +

1∫
0

|g − g′|dt = d((f, g), (f ′, g′) .

Thus Proposition
u-ext
5.2 implies the assertion iii). In the nest step we prove i) for

A = J1 ∪ · · · ∪ Jn. The key observation here is that we can find new intervals

J ′1, ...., J
′
m such that the J ′l only overlap in one point and

A =
⋃

l

J ′l .

Therefore, we may define

uA(x) =
m∑

l=1

1J ′l
x = add(1J ′1

x, add(1J ′2
x, · · · add(1J ′m−1

x, 1J ′mx) · · · ) .

Being a composition of continuous function that is continuous. Moreover, for every

l we may consider the sequence of function f l
n constructed for the interval J ′l . The

function

fn(t) =
m∑

l=1

f l
n(t)

is positive, continuous and vanishes in the overlapping endpoints. Hence 0 ≤ fn(t) ≤
1 and the argument from above shows

d1(fnf, fng) ≤ d1(f, g) .

This yields

d1(f1A, g1A) = lim
f

d1(ffn, gfn) ≤ d1(f, g) .
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Then we define

f1Ac = f − f1A = lim
n

add(f,−ffn) = lim
n

f(1− fn) .

Since 0 ≤ 1− fn ≤ 1 we also prove as above that

d1(f1Ac , g1Ac) ≤ d1(f, g) .

Therefore i) is proved for A being a finite union of intervals. Let us show iv) for this

particular case. Indeed,

add(f1A, f1Ac) = lim
n

add(ffn, f(1− fn)) = lim
n

ffn + f(1− fn) = f .

We need an additional estimate for showing the general case:

8-cont (6.1) d1(f1A, 0) ≤ sup
t∈A

|f(t)|
∑

k

|Jk| .

Indeed, inductively we may choose the non-overlapping J ′l in groups J ′1, ..., J
′
l1
,

J ′l1+1, ..., Jl′2
, ... such

lk+1∑
l=lk−1+1

|J ′l | ≤ |Jk| .

Then, we have

d1(f1A, 0) = lim
n

1∫
0

|fnf(t)|dt ≤ sup
t∈A

|f(t)| lim
n

1∫
0

fn(t)dt

= sup
t∈A

|f(t)|
∑

l

|J ′l | ≤ sup
t∈A

|f(t)|
∑

k

|Jk| .

Now, we consider the general case A =
⋃

k Jk. We define An =
⋃

k≤n Jk. We

want to show that f1An is Cauchy. For this we choose non-overlapping intervals

J ′lk−1+1, ...., J
′
lk
⊂ Jk. Then, we deduce from (

8-cont
6.1) that for n ≤ m

chy3 (6.2) d1(f1An , f1Am) ≤ sup
t
|f(t)|

m∑
k=n+1

lk∑
l=lk−1+1

|J ′lk | ≤ sup
t
|f(t)|

m∑
k=n+1

|Jk| .

Thus we may define f1A = limn f1An . Again, we have

d1(f1A, g1A) = lim
n

d1(f1An , g1An) ≤ d1(f, g) .

By the unique extension principle, we find a Lipschitz map uA : X → X such that

uA(f) = f1A. We use the unique extension principle to define −x and the define

uAc(x) = add(x,−uA(x)). For f, g ∈ C[0, 1] we have

d1(uAc(f), uAc(g)) = lim
n

d1(f1Ac
n
, g1Ac

n
) ≤ d1(f, g) .
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Thus by unique extension this also holds for x, y ∈ X. Finally, we note that for

f ∈ C[0, 1]

add(f1A, f1Ac) = add(f1A, add(f,−f1A)) = lim
n

add(f1An , add(f,−f1An) = f .

Indeed, the equality holds for every n ∈ N. Now, we will prove v). We may assume

that

A =
⋃
k

Jk

such that the Jk’s are non-overlapping. We define

An =
⋃
k≤n

Jk .

Let ε > 0 and δ > 0 such that

|t− s| < δ ⇒ |f(t)− f(s)| < ε

2
.

Now, we consider x ∈ A such that

d(x, Ac) = inf
y∈B

|x− y| ≥ δ

This means that

B(x, δ) =
⋃
k

Jk ∩B(x, δ) .

This implies

lim
n
|B(x, δ) ∩ Ac

n| = 0 .

Moreover, we can find a maximal family x1, ..., xm of such points such that d(x, Ac) ≥
δ implies d(x, xj) < δ for some j. Then, we may choose n large enough such that

sup
t
|f(t)|

m∑
j=1

|B(xj, δ) ∩ Ac
n| ≤

ε

2
.

Now, we define D =
⋃

j B̄(xj, δ). Since Ac
n ∩Dc is again a collection of intervals we

see that

d1(f1Ac
n
, 0) ≤ d1(f1Ac

n∩D, 0) + d1(f1Ac
n∩Dc , 0)

≤ sup
t
|f(t)|

m∑
j=1

|B(xj,
δ

2
) ∩ Ac

n|+ sup
t∈Ac

n∩Dc

|f(t)| .

Now, we consider t ∈ Ac
n ∩Dc. If d(t, B) ≥ δ

2
, then d(t, xj) ≤ δ

2
hence t ∈ D. Thus

we may assume d(t, B) < δ
2
. Then we find s ∈ B such that |t− s| < δ and thus

|f(t)| ≤ sup
s∈B

|f(s)|+ ε .
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This implies

d1(f1Ac
n
, 0) ≤ ε

2
+ ε + sup

s∈B
|f(s)| .

for n ≥ n0. The assertion is proved.

Remark 6.8. For J = [a, b] we have

I(f1[a,b]) =

b∫
a

f(t)dtpl.

approx Lemma 6.9. Let (Am) be a sequence such that

Am =
⋃
k

Jm
k

and

lim
m

∑
k

|Jm
k | = 0 .

Then

lim
m

d1(x1Am , 0) = 0

holds for every x ∈ X.

Proof. Let (fn) be Cauchy sequence converging to x. Let ε > 0. Then, we

may choose n such that

d1(fn, x) <
ε

2
.

Since uAm is Lipschitz, we deduce

d1(fn1Am , uAm(x)) <
ε

2
.

for all m ∈ N. According to (
8-cont
6.1) we find

d1(fn1Am , 0) ≤ sup
t
|fn(t)|

∑
k

|Jm
k | .

By assumption, we may find m0 such that

d1(fn1Am , 0) <
ε

2

holds for all m ≥ m0. This implies

d1(uAm(x), 0) ≤ d1(uAm(x), fn1Am) + d1(fn1Am , 0) < ε

for all m > m0.
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Proof of Theorem
inj
6.6. Let (fn), (gn) be Cauchy such that d1− limn fn = x

and d1 − limn gn = y and fn converges to f and gn converges to g a.e. We consider

h′n = fn − gn and z = add(x,−y). We want to show

d1(x, 0) = 0 .

Clearly, h′n converges to 0 almost everywhere. Passing to subsequence (hk) we may

assume that d1(hk, hk+1) ≤ 6−n. According to the proof of Proposition
limit1
6.5, we find

Ak =
⋃

l J
k
l such that ∑

l

|J l
k| ≤ 21−k

such that

|hn(t)− hn+1(t)| ≤ 2−n

for all t /∈ Ak. By the definition of a.e. we find Bk =
⋃

l J̃
k
l such that∑

l

|J̃ l
k| ≤ 21−k

and

lim
t

hn(t) = 0

holds for all t /∈ Bk. Thus we define

Ck =
⋃

l

J l
k ∪
⋃

l

J̃ l
k .

Then ∑
l

|J l
k|+

∑
l

|J̃ l
k| ≤ 22−k

and for all t /∈ Ck we have

|hn(t)| = | lim
m

hn(t)− hm(t)| ≤ lim sup
m

|hn(t)− hm(t)| ≤ 21−n .

According to Lemma (
approx
6.9) we find a k0 such that

d1(uCk
(z), 0) < ε

for all k ≥ k0. For all n ≥ k we deduce from Lemma
uniqueext
6.7 that

d1(1Cc
k
fn, 0) ≤ 21−n .

Therefore

d1(uCc
k
(z), 0) = lim

n
d1(uCc

k
(fn), 0) = 0 .

Since x = add(uCc
k
(x), uCc

k
(x)), we deduce

d1(z, 0) = d1(add(uCk
(z), uCc

k
(z)), add(uCk

(0), uCc
k
(0)))
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≤ d1(uCk
(z), 0) + d1(uCc

k
(z), 0) < ε .

Finally, we observe that

d1(x, y) = d1(add(x,−y), 0)

holds by unique extension. Thus x = y.
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7. Closed and Compact Sets

Let (X, d) be a metric space. We will say that a subset A ⊂ X is closed if X \A is

open.

closed Proposition 7.1. Let (X, d) be a complete metric space and C ⊂ X a subset. C

is closed iff every Cauchy sequence in C converges to an element in C.

Proof: Let us assume C is closed and that (xn) is a Cauchy sequence with elements

in C. Let x = limn xn be te limit and assume x /∈ C. Since X \ C is open

B(x, ε) ⊂ X \ C

for some ε > 0. Then there exists an n0 such that d(xn, x) < ε for n > n0. In

particular,

xn0+1 ∈ B(x, ε)

and thus xn0+1 /∈ C, a contradiction.

Now, we assume that every Cauchy sequence with values in C converges to an

element in C. If X \ C is not open, then there exists an x /∈ C and no ε > 0 such

that

B(x, ε) ⊂ X \ C .

I.e. for every n ∈ N, we can find xn ∈ C such that

d(x, xn) <
1

n
.

Hence, lim xn = x ∈ C but x /∈ C, contradiction.

The most important notion in this class is the notion of compact sets. We will say

that a subset C ⊂ X is compact if For every collection (Oi) of open sets such that

C ⊂
⋃
i

Oi = {x ∈ X | ∃i∈Ix ∈ Oi}

There exists n ∈ N and i1, ..., in such that

C ⊂ Oi1 ∪ · · · ∪Oin .

In other words

Every open cover of C has a finite subcover .
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Definition 7.2. Let X ⊂
⋃

Oi be an open cover. Then we say that (Vj) is an open

subcover if

X ⊂
⋃
j

Vj

all the Vj are open and for every j there exists an i such that

Vj ⊂ Oi .

It is impossible to explain the importance of ‘compactness’ right away. But we can

say that there would be no discipline ‘Analysis’ without compactness. The most

clarifying idea is contained in the following example.

Proposition 7.3. The set [0, 1] ⊂ R is compact.

Proof: Let [0, 1] ⊂
⋃

i Oi. For every x ∈ [0, 1] there exists an i ∈ I such that

x ∈ Oi .

Since Oi is open, we can find ε > 0 such that

x ∈ B(x, ε) ⊂ Oi .

Using the axiom of choice, we fine a function εx and ix such that

x ∈ B(x, εx) ⊂ Oix .

Let us define the relation x � y if x < y and

y − x ≤ ex + ey .

The crucial point here is to define

S = {x ∈ [0, 1] | ∃ x1, ..., xn :
1

2
� x1 � · · · � xn � x} .

We claim a) sup S ∈ S and b) sup S = 1.

Ad a): Let y = sup S ∈ [0, 1]. Then there exists an x ∈ S with

y − εy < x ≤ y .

Then obviously x � y. Since x ∈ S, we can find

1

2
� x1 � · · · � xn � x � y .

Thus y ∈ S.

Ad b): Assume y = sup S < 1. Let 0 < δ = min(ey, 1− y). Then

y + δ − y = δ ≤ εy + εy+δ .
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By a), we find

1

2
� x1 � · · · � xn � y � y + δ

and thus y + δ ∈ S. Contradiction to the definition of the supremum.

Assertion a) and b) are proved.

Therefore we conclude 1 ∈ S and thus find x1, ..., xn such that

1

2
� x1 � · · · � xn � 1 .

Let x0 = 1
2

and xn+1 = 1, then by definition of �, we have

[xj, xj+1] ⊂ B(xj, εxj
) ∪B(xj+1, εxj+1

) ⊂ Oixj
∪Oixj+1

for j = 0, .., n. Thus, we deduce

[
1

2
, 1] ⊂

n⋃
j=0

[xj, xj+1] ⊂
n+1⋃
j=0

Oixj
.

Doing the same trick with [0, 1
2
], we find

[0, 1] ⊂
m+1⋃
j=0

Oix′
j

∪
n+1⋃
j=0

Oixj

and we have found our finite subcover.

subcom Proposition 7.4. Let B ⊂ X be closed set and C ⊂ X be a compact set, then

B ∩ C

is compact

Proof: Let B ∩ C ⊂
⋃

Oi be an open cover. then

C ⊂ (X \B) ∪
⋃
i

Oi

is an open cover for C, hence we can find a finite subcover

C ⊂ (X \B) ∪Oi1 ∪ · · · ∪Oin .

Thus

B ∩ C ⊂ Oi1 ∪ · · · ∪Oin

is a finite subcover.
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ccc Lemma 7.5. Let (X, d) be a metric space and D ⊂ X be a countable dense set in

X, then for every subset C ⊂ X and every open cover

C ⊂
⋃
i

Oi

we can find a countable subcover of balls.

Proof: Let us enumerate D as D = {dn |n ∈ N}. Let x ∈ C and find i ∈ I and

ε > 0 such that

x ∈ B(x, ε) ⊂ Oi .

Let k > 2
ε
. By density, we can find an n ∈ N such that

d(x, dn) <
1

2k
.

Then

x ∈ B(dn,
1

2k
) ⊂ B(x,

1

k
) ⊂ B(x, ε) ⊂ Oi .

Let us define

M = {(n, k) | ∃i∈IB(dn,
1

2k
) ⊂ Oi} .

Then M ⊂ N2 is countable and hence there exists a map φ : N → M which is

surjective (=onto). Hence for Vm = B(dφ1(m),
1

2φ2(m)
), φ1, φ2 the 2 components of

φ we have

C ⊂
⋃
m

Vm

and (Vm) is a countable subcover of balls of the original cover (Oi).

main Theorem 7.6. Let (X, d) be a metric space. Let C ⊂ X be a subset. Then the

following are equivalent

i) a) Every Cauchy sequence of elements in C converges to a limit in C.

b) For every ε > 0 there exists points x1, ..., xn ∈ X such that

C ⊂ B(x1, ε) ∪ · · · ∪B(x, ε) .

ii) Every sequence in C has a convergent subsequence.

iii) C is compact.

Proof: i) ⇒ ii). Let (xn) be a sequence. Inductively, we will construct infinite

subset A1 ⊃ A2 ⊃ A3 · · · and y1, y2, y3,... in X such that

∀l∈Aj
: d(xl, yj) < 2−j−1 .



32 1. METRIC SPACES

Put A0 = N. Let us assume A1 ⊃ A2 ⊃ · · ·An and y1, ..., yn have been constructed.

We put ε = 2−n−2 and apply condition i)b) to find z1, ..., zm such that

C ⊂ B(z1, ε) ∪ · · · ∪B(zm, ε) .

We claim that there must be a 1 ≤ k ≤ m such that

An(k) = {l ∈ An |xn ∈ B(zk, ε)}

has infinitely many elements. Indeed, we have

An(1) ∪ · · · ∪ An(m) = An .

If they were all finite, then a finite union of finite sets would have finitely many

elements. However An is infinite. Contradiction! Thus, we can find a k with An(k)

infinite and put An+1 = An(k) and yn+1 = zk. So the inductive procedure is finished.

Now, we can find an increasing sequence (nj) such that nj ∈ Aj and deduce

d(xnj
, xnj+1

) ≤ d(xnj
, yj) + d(yj, xnj+1

) <
1

2
2−j +

1

2
2−j = 2−j

because nj ∈ Aj and nj+1 ∈ Aj+1 ⊂ Aj. Thus (xnj
) is Cauchy. Indeed, be induction,

we deduce for j < m that

d(xnj
, xnm) ≤ d(xnj

, xnj+1
) + d(xnj+1

, xnj+2
) · · · d(xnm−1 , xnm)

≤ 2−j

m−1∑
k=0

2−k = 21−j .

This easily implies the Cauchy sequence condition. By a) it converges to some

x ∈ C. We got our convergent subsequence.

ii) ⇒ iii): We will first show ii) ⇒ i)b). Indeed, let ε > 0 and assume for all n ∈ N,

y1, ..., yn ∈ C we may find

x(n, y1, ..., yn) ∈ C \ (B(y1, ε) ∪ · · ·B(yn, ε)) .

Then we define x1 ∈ C and find x2 ∈ C \B(x1, ε). Then we find x3 ∈ C \B(x1, ε)∪
B(x2, ε). Thus inductively we find xn ∈ C such that

d(xn, xk) ≥ ε

for all 1 ≤ k ≤ n. It is easily seen that (xn) has no convergent subsequence. Thus i)b)

is showed (with points in C). For every εk = 1
k

we find these points yk
1 , ...., y

k
m(k) ∈ C

such that

C ⊂ B(yk
1 ,

1

k
) ∪ · · · ∪B(ym(k),

1

k
) .
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Then, we see that D = {yk
j : k ∈ N, 1 ≤ j ≤ m(k)} is dense in C. Therefore, we

may work with the closure X̃ = D̄ and show that C is compact in X̃. (It will then

be automatically compact in X). By Lemma
ccc
7.5, we may assume that

C ⊂
⋃
k

Ok

and Ok’s open. If we can find an n such that

C ⊂ O1 ∪ · · · ∪On

the assertion is proved. Assume that is not the case and choose for every n ∈ N
an xn ∈ C \ O1 ∪ · · · ∪ On. According to the assumption, we have a convergent

subsequence, i.e. limk xnk
= x ∈ C. Then x ∈ On0 for some n0 and there exists a

ε > 0 such that

B(x, ε) ⊂ On0 .

By convergence, we find a k0 such that d(x, xnk
) < ε for all k > k0. In particular,

we find a k > k0 such that nk > n0. Thus

xnk
∈ B(x, ε) ∈ On0 ⊂ O1 ∪ · · · ∪Onk

.

Contradicting the choice of the (xn)’s. We are done.

iii) ⇒ i)b) Let ε > 0 and then

C ⊂
⋃
x∈C

B(x, ε) .

thus a finite subcover yields b).

iii) ⇒ i)a) Let (xn) be a Cauchy sequence. Assume it is not converging to some

element x ∈ C. This means

cccc (7.1) ∀x ∈ C∃ε(x) > 0∀n0∃n > n0 d(xn, x) > ε .

Then

C ⊂
⋃
x∈C

B(x,
ε(x)

2
) .

Let

C ⊂ B(y1,
ε(y1)

2
) ∪ · · · ∪B(y1,

ε(y1)

2
)

be a finite subcover (compactness). Then there exists at least one 1 ≤ k ≤ m such

that

Ak = {n ∈ N | d(xn, yk) <
ε(yk)

2
}
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is infinite. Fix that k and apply the Cauchy criterion to find n0 such that

d(xn, xn′) <
ε(yk)

2

for all n, n′ > n0. By (
cccc
7.1), we can find an n > n0 such that

d(xn, yk) > ε(yk) .

Since Ak is infinite, we can find an n′ > n0 in Ak thus

ε(yk) < d(xn′ , yk) ≤ d(xn, xn′) + d(xn′ , yk)

<
ε(yk)

2
+

ε(yk)

2
= ε(yk) .

A contradiction. Thus the Cauchy sequence has to converge to some point in C.

Corollary 7.7. Every intervall [a, b] ⊂ R with a < b ∈ R is compact

Proof: It is easy to see that X \ [a, b] is open. Hence, by Proposition
closed
7.1 [a, b] is

complete, i.e. i)a) is satisfied. Given ε > 0, we can find k > 1
ε
. For m > k(b− a) we

derive

[a, b] ⊂
m⋃

j=0

B(a +
j

k
, ε) .

Thus the Theorem
main
7.6 applies.

cube Lemma 7.8. Let r > 0 and n ∈ N, the set Cr = [−r, r]n is compact.

Proof: Let x /∈ Cr, then there exists an index j ∈ {1, .., n} such that |xj| > r. Let

ε = |xj| − r and y ∈ Rn such that

max
i=1,..,n

|xi − yi| < ε ,

then

|yj| = |yj − xj + xj| ≥ |xj| − |yj − xj| > |xj| − ε = r .

thus y /∈ Cr. Hence, Cr is closed and according to Proposition
rncomp
4.3, we deduce that

Cr is complete.

For n = 1 and ε > 0, we have seen above that for k > 1
ε

and m > 2r
k

[−r, r] ⊂
m⋃

j=0

B(−r +
j

k
, ε) .

Therefore

[−r, r]n ⊂
⋃

j1,....jn=0,...m

B∞((−r +
j1

k
, ..,−r +

jn

k
), ε) .

Thus i)a) and i)b) are satisfies and the Theorem
main
7.6 implies the assertion (The

separable dense subset is Qn.)
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Theorem 7.9. Let C ⊂ Rn be a subset. The following are equivalent

1) C is compact.

2) C is closed and there exists an r such that

C ⊂ B(0, R) .

(That is C is bounded.)

Proof: 2) ⇒ 1) Let

C ⊂ B(0, R) ⊂ [−R,R]n

be a closed set. Since [−R,R]n is compact, we deduce from Proposition
subcom
7.4 that C

is compact as well.

1) ⇒ 2) Let C subset Rn be a compact set. According to Theorem
main
7.6 i)b), we find

C ⊂ B(x1, 1) ∪ · · · ∪B(xm, 1)

thus for r = maxi=1,..,m(d(xi, 0) + 1) we have

C ⊂ B(0, r) .

Moreover, by Theorem
main
7.6 i)a) and Proposition

closed
7.1, we deduce that C is closed.

We will now discuss one of the most important applications.

Theorem 7.10. Let (X, d) be a compact metric space and f : X → R be a continuous

function. The there exists x0 ∈ X such that

f(x0) = sup{f(x) : x ∈ X} .

Proof. Let us first assume

A = {f(x) : x ∈ X}

is bounded and s = sup A. For every n ∈ N, we know that s− 1
n

is no upper bound.

Hence there xn ∈ X such that

s ≥ f(xn) > s− 1

n
.

Let (nk) be such that limk xnk
= x ∈ X. Then we deduce from continuity that

f(x) = lim
k

f(xnk
) ≥ lim s− 1

nk

= s .

By definition of s we find f(x) = s. Now, we show that A is bounded. Indeed, if

note we find xn ∈ X such that f(xn) ≥ n. Again we find a convergent subsequence



36 1. METRIC SPACES

(xnk
). Since f(xnk

) is convergent it is bounded. We assume (fnk
) is bounded above

by m ∈ nz. Choosing k ≥ m + 1 we get

m ≥ f(xnk
) ≥ nk > nm ≥ m .

This contradiction shows that A is bounded and hence the first argument applies.


