CHAPTER 1

Metric Spaces

1. Definition and examples

Metric spaces generalize and clarify the notion of distance in the real line. The

definitions will provide us with a useful tool for more general applications of the
notion of distance:

DEFINITION 1.1. A metric space is given by a set X and a distance function d :
X x X — R such that

i) (Positivity) For all z,y € X
0 <d(z,y) .

ii) (Non-degenerated) For all x,y € X

0 =dz,y) & z=uy.
iii) (Symmetry) For all x,y € X

d(z,y) = d(y, )

iv) (Triangle inequality) For all x,y,z € X

d(z,y) < d(z,z)+d(z,y) .

Examples:
i) X =R? = RxR, 2 = (z1,22), y = (y1,2)

di(z,y) = |z1 — |+ w2 — yol .

i) X =R% o= (21,22), y = (y1.2)

=

do(z,y) = (lz1 — i + |22 — 1)
iv) Let X = {p1,p2,ps} and

d(phpz) = d(p27p1) =1,

d(p17p3) = d(p?npl) = 2a
1
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d(p2,p3) = d(ps,p2) = 3.
Can you find a triangle (p1, p2, p3) in the plane with these distances?
v) Let X = {p1,p2, p3} and
d(p1,p2) = d(p2,p1) =1,
d(pi,ps) = d(ps,;) = 2,
d(p2,p3) = d(ps,p2) = 4.

Can you find a triangle (p1, p2, p3) in the plane with these distances?
vi) The French railway metric (Chicago suburb metric) on X = R? is defined
as follows: Let zq = (0,0) be the origin, then

(

dy(z,y) if there exists a t € R such that x; = ty;

and zo = tys
dsner(z,y) =

\dg(fﬁ,.ﬁﬂo) + d2(x07y) else

Exercise: Show that the railroad metric satisfies the triangle inequality:.

It is by no means trivial to show that d, satisfies the triangle inequality. In the
following we write 0 = (0, ..., 0) for the origin in R™.

LEMMA 1.2. Let x,y € R", then

sziyil < (ZW%‘\Q) (Z ’%‘\2)
=1 i—1

=1

LEMMA 1.3. On R"™ the metric

do(z,y) = (Z |z — yi|2>
i=1

satisfies the triangle inequality.

CS
PRrROOF. Let x,y,2 € R". Then we deduce from Lemma h_2

dz,y)* = > |wi—wl> = Y |(@i—2z)— (5 — )
=1 =1

= Z (s — 2)* = 22(1’% —2i) (Y — zi) + Z ly; — 2z
i=1 =1 1=1

< d(z,2)* + 2d(z,y)d(y, z) + d(y, z)
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= (d(z,2)+d(y,2))*.
Hence,
d(z,y) < d(z,z)+d(y,z)

and the assertion is proved. [ |

More examples:
(1) Let n be a prime number. On Z we define

dd (I y) — n" max{meN:n™ divides x-y}
n ) N

The n-adic metric satisfies a stronger triangle inequality
dd,(x,y) < max{dd,(z,z),dd,(z,y)} .

(2) Let 1 <p < oo. Then

-
i=1

defines a metric n R".
(3) For p =00
doo('ray) = 'I_IlaX |x2 - fl/z’

— Ly

also defines a metric on R™.

Project 1: Let 1 < p,q < oo such that 1/p+1/q = 1. Show Minkowski’s inequality.

p q
(1.1) l’yS%er—

q
holds for all z,y > 0. Hint: the function f(z) = —Inz is convex on (0, c0).

PROOF OF THE TRIANGLE INEQUALITY FOR d,. The triangle inequality for p =
1 is obvious. We will fist show

1 1

n n P n q

(1.2) DI (va’) (Zw)
i=1 =1 =1

whenever 713 + % = 1. Let ¢t > 0. We first observe that

n n

S wal = Sl < S St 4 Lt
p q
=1

=1 =1

< R
== lmlP = lul"
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What is best choice of t? Make
Yl = Yl
i=1 i=1

i.e.

NgE

|y;|?
1

tp+q _ i

'M3

@
I
—

|2 [P

This yields

p

(Zwr)™
|szyz| <th’l‘ |p - Z:—P2|xl|p

pta =1
5" il
n % n 17%
_ (zw) (z |xz-|p)
=1 =1

Now, we proof the triangle inequality. Let z = (x;), (y;) and z = (z;) in R%. Then

ink?2
we apply (i?ri

d d
dp(x,y)p=Z!xi—y¢|p < Z|xi_yilp_1<|xi_zi|+‘zi_yi’)

i=1 =1

d d
e e L o e S Eo RV L ER T
i=1 =1

d i d v d 0
< (Z(m —yi|p_1)q> (Z|Zi —l’i|p> + <Z|Zi —yz"p>
=1 =1 =1

However, 1 = 1/p+ 1/q implies p — 1 = p/q and thus ¢(p — 1) = p. Hence we get
dyp(2,y)" < dp(a,y)" " (dy(7,2) + dp(2,y)) -

If z # y we may divide and deduce the assertion. [ |
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2. Excursion: Convex functions

DEFINITION 2.1. Let I be an interval. A function f: I — R is called convex if

fOz+ (1 =Ny) < AMf(2)+(1-Nf(y)
holds for all x,y € I, 0 < A < 1.
LEMMA 2.2. Let f : [a,b] — R be continuous, differnetiable on (a,b) such that f' is

increasing. Then f is convex.

PROOF. Let z € [a,b]. We will show that
+z)—
o) = fly+2)— 1)

z
is monotone increasing on (0, b—xz). Indeed, by the fundamental theorem and change

of variables we deduce for z; < z9 and A = z—; (s = At, ds = Adt
roods ] At [ dt
o= [ 1o = [ronst = [rons
Z1 Z1 z9
0 0 0

< [r0F = o).

Now, wefixy <z andu=XAx+(1-Ny=y+Azx—vy), z1 = ANx—vy), 22 =2 —v.

Then, we get
fly+2)—fly) _ fl2) - fly)

Az —y) T (r—y)

This implies
Oz + (1= Ny) < fly) + A(f(2) = f(y) = Mf(x) + (1= f(y) - u

Mink
ProoF oF T.1. Let z,y > 0. Since — Inz is convex we have
1 1 1 1
—In(=2? + —y?) < —(—In2?)+ —(—1Iny?).
( 7= tg ) p( ) .
This shows by the monotonicity of exp that

1 1
_xp_i__yq > 6lna[:-&-lny = zy.

Minkowski’s inequality is proved. |
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3. Continuous functions between metric spaces

Continuous functions ‘preserve’ properties of metric spaces and allow to describe
deformation of one metric space into another. There are three different (but equiv-
alent) ways of defining continuity, the e-d-criterion, the sequence criterion and the

topological criterion. Each of them is interesting in its own right.

DEFINITION 3.1. Let (X,d) and (Y,d') be metric spaces. A map f: X — Y is called

continuous if for every x € X and € > 0 there exists a 6 > 0 such that

(3.1) dlay) <6 —  d(f(), f(y) <<

Let us use the notation
B(2,0) = {y : d(.y) < 3} .
For a subset A C X, we also use the notation

f(A) = {f(z) - z € A}
Similarly, for B C Y

f'(B) = {re X : f(x) € B}.
edelt
Then (3.1) means

f(B(x,9)) < B(f(x),¢) -

Or in a very non-formal way
f maps small balls into small balls .

Our aim is to prove a criterion for continuity in terms of so called open sets. This
criterion illustrates simultaneously the role of open sets and its interaction with

continuity and has a genuinely geometric flavor.
DEFINITION 3.2. A subset O of a metric space is called open if
VYreO :30 >0 :B(z,) CO.
Examples:
O=(-1,1),0=R,0 = (-1,1) x (-2,2)
are open in R, (R?, d,) respectively.
REMARK 3.3. The sets B(x,¢), x € X, € > 0 are open.

PROPOSITION 3.4. Let (X,d), (Y,d') be metric spaces and f : X — Y be a map. f
is contivous iff f~1(O) is open for all open subsets O CY .
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PROOF. =: We assume that f is continuous and O is open. Let x € f~1(0),
i.e. f(z) € O. Since O is open, there exists an € > 0 such that B(f(z),e) C O. By

continuity, there exists a § > 0 such that
f(B(x,8)) C B(f(x),e) C O
Therefore
B(z,8) C f710) .

Since x € f71(O) was arbitrary, we deduce that f~!(O) is open.
«<: Let x € X and € > 0. Let us show that

B(f(x),¢)

is a on open subset of (Y,d'). Indeed, let y € B(f(z),¢) define ¢’ = ¢ — d'(y, f(x)).
Let z € Y such that

/

d(z,y) <e

then
d(f(z),2z) < d(f(z),y) +d(y,z) < d(f(z),y) +e—d(y, f(z)) = ¢.
Thus
B(y,e —d(f(z),y)) C B(f(x).¢).
By the assumption, we see that f~1(B(f(x),¢)) is an open set. Sincex € f~1(B(f(x),¢)),
we can find a § > 0 such that
B(z,8) C fH(B(f(z),e)) -

Hence, for all  with d(z,Z) < 6, we have

d(f(z), f(Z)) <e.

The assertion is proved. [ |

Examples:
(1) Let (X,d) be a metric space and xy € X be a point , then f(z) = d(z, x¢)

is continuous. Indeed, the triangle inequality implies
d(d(z, o), d(d(y,0)) = |d(z,z0) — d(y,zo)| < d(z,y)

This easily implies the assertion.
(2) On R™ with the standard euclidean metric d = dy, the function f : R* — R"
defined by f(z) = d(z,0)x is continuous.
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(3) (Exercise) The function f : R* — R3, f(z) = (cos(zy),sin(zs), cos(zy)) is
continuous.
DEFINITION 3.5. Let (X,d), (Y,d') be a metric space. The space C(X,Y) is the set

of all continuous functions from X toY. Let xg € X be a point. Then

Co(X,Y) = {f: X =Y : [ is continuous and supd'(f(x), f(z0)) < oo}

zeX

is the subset of bounded continuous functions.

PROPOSITION 3.6. Let (X, d), (Y,d') be metric spaces and xo € X. Then Cyp(X,Y)
equipped with
d(f,9) = supd(f(x),g(x))

zeX
1S a metric space.

Problem: Show that d is not well-defined on C(R,R).

Proof: d(f,g) = 0 if and only if f(z) = g(z) for all x € X. This means f = g. Let
us show that d is well-defined. Indeed, if f,g € Cp(X,Y). Then

sup d'(f(z),g(x)) < Sup d'(f(x), f(x0)) +d'(f(20), 9(x0)) + d'(9(x0), 9())

< sup d'(f(x), f(xo)) +d'(f(x0), g(z0)) + sup d(g(wo), g(x))

is finite. Let A be a third function and z € X. Than

d(f(x),g(x)) < d'(f(x),h(z)) +d(h(x),g(x)) < d(f h)+d(h,g).
Taking the supremum yields the assertion. [ |

PROPOSITION 3.7. Let (X,d) be a metric space. Then C(X,R) is closed under
(pointwise-) sums, products and multiplication with real numbers. (C(X,R) is an

algebra over R).

REMARK 3.8. Let X =N and d(z,y) =1 of v # y and d(x,y) = 0 for x = y. (This

is called the discrete metric). Then C(X,R) is an infinite dimensional vector space.

al
PROOF OF H Let f,g € C(X,R) be continuous and z € X. Consider 2’ € X.
Then

fo(x) = fa(y) = f(x)g(x) — f(y)g(y) = (f(z) — f(y))g(x) + f(y)(g(z) — g(y))
= (f(x) = f(y)g(@) + f(x)(g(x) — g(y)) + (f(y) — f(x))(g(z) — g(y)) -
Let £ > 0 and € = min{e, 1}. We may choose §; > 0 such that

AU (), F) (1 + lg(@)]) < 5
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holds for all d(z,y) < d;. Similarly, we may choose d2 > 0 such that
d(g(x), 9(y))(1 + [f(2)]) <

Let 6 = min(dq,02) and d(z,y) < d. Then we deduce that

W | oy

g &
-+ —<e < ¢.

A(folw), Fol)) = Fa(x) — foly) < 5+ 5+
|

Thus fg is again continuous. The other assertions are easier.

COROLLARY 3.9. The polynomials on R are continuous.
LEMMA 3.10. Let 1 < p < o0 and x,y € R", then
i; dp(xay> S dOO(I7y) S dp(x7y> .
ne
PRroOF. The last inequality is obvious. For the first one, we consider x,y € R"
and 1 < p < oo, then by estimating every element in the sum against the maximum

dp(r,y)P = Y | —yil’ < nmax{|z; -y}
i=1
Taking the p-th root, we deduce the assertion. [ |

COROLLARY 3.11. Let 1 < p,q < oo, then the identity map id : (R",d,) — (R™,d,)

18 continuous.
Proor. We have for all z € R* and € > 0
de(l', %) - qu(l‘76) .

This easily implies the assertion.

COROLLARY 3.12. The metrics d,, define the same open sets on R™.
DEFINITION 3.13. Let (X,d) be a metric space. We say that a sequence (z,,) con-

verges to x if for all € > 0 there exists ng such that for n > ng we have

d(zp, z0) < €.

In this case we write
limz, = x
n

or more explicitly
d—limz, = x.

A sequence (x,,) is convergent, if there exists v € X with lim, z,, = x.



10 1. METRIC SPACES

Examples: dy — limn% = 0, dd3 — lim, 3" = 0. (What axioms of the natural
numbers are involved?).

PROPOSITION 3.14. Let (X, d), (Y,d") be metric spaces and f : X — Y be a map.

Then f is continuous if for every convergent sequence (x,) in X

lim f(x,) = f(limz,) .

Proof: =: Let x = lim,, x,, and € > 0, then there exists a 6 > 0 such that

d(y,x) <6 =d(f(y), f(x)) <e.

Let ng € N be such that
d(zp,z) <6
for all n > ng, then
d'(f(zn), f(z)) <e
for all n > ng. Hence
lim f(2,) = f(x).

< Let x € X and assume in the contrary that
Je>0V5 > 03y :d(y,xz) < dand d'(f(x), f(y)) > €.

Applying these successively for all § = %, we find a sequence (xy) such that

1
dlaa) < ¢ and (), f(@) 2 <
and thus
h;na:k = x.

By assumption, we have
lim f(a) = f(2).

Hence, there exists a kg such that for all k£ > kg

d(f(zr), f(2)) <e.

a contradiction. ]
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4. Complete metric spaces and completion

Complete metric space are crucial in understanding existence of solutions to many
equations. Complete spaces are also important in understanding spaces of inte-
grable functions. We will review basic properties here and show the existence of a
completion.

We will say that a sequence in a metric space is a Cauchy sequence of for every

€ > 0 there exists ng € N such that
d(xp, xm) < €

for all n, m > ny.

DEFINITION 4.1. A metric space (X, d) is called complete, if every Cauchy sequence
converges.

PROPOSITION 4.2. The space (R?,d,) is complete.

Proof: Let z, be a Cauchy sequence in (R? d;). Then x, = (z,(1),2,(2)) is a
sequence of pairs.

Claim: The sequences (z,(1))nen and (z,(2)),en are Cauchy sequences.

Indeed, let € > 0, then there exists an ng such that
di(xp, xm) < €
for all n, m > ng. In particular, we have
20 (1) = 2m(D)] < |2n(1) = 2 (D] + [20(2) = 2m(2)] < di(@n, 2m) <€
for all n,m > ng and
20 (2) = 2m(2)] < |2n(1) = 2m(D)| + |2n(2) = 2m(2)] < di(zn, 2m) <e.

Therefore, (z,(1)) and (z,(2)) are Cauchy.
Since R is complete, we can find x(1) and z(2) such that

lignxn(l) = z(1) and liTanxn(Q) = 2(2).

Claim: lim,, z, = (z(1),x(2)).
Indeed, Let € > 0 and choose n; such that

€
fea(1) — 2()] < 5
for all n > n;. Choose ny such that

[74(2) —2(2)] < 5
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for all n > ny. Set ng = max{ni,ns}, then for every n > ngy, we have

dy(zn, (2(1),2(2)) = |oa(1) —2(1)] + |2n(2) —2(2)] < €
Thus
lirrlnxn =z
and the assertion is proved. [ |
Examples:

(1) Let X =R\ {0} and d(z,y) = |z — y|, them (X, d) is not complete. The
sequences (%) is Cauchy and does not converge.
(2) Let p be a prime number. On the set of integers, we define
dd,(z,w) = p™",
where n = max{n : p" divides (z—w) }. This satisfies the triangle inequal-
ity. The sequence (z,) given by z,, = p+ p* +--- + p" is a non convergent
Cauchy sequence.

THEOREM 4.3. Let n € N. The space (R",dy) is a complete metric space.

o . " E%ie_l . .
PROOF. Similar as in Proposition 4.2 using the following Lemma . [ |

LEMMA 4.4. Let x,y € R", then

n

do(z,y) < Y |wi—uil -

i=1
PrOOF. We proof this by induction on n € N. The case n = 1 is obvious.
Assume the assertion is true for n and let z,y € R"*'. We define the element

2= (Z1,...; Tp,Yns1), then we deduce from the triangle inequality

dg(l‘,y) S d?(l‘?’z) +d2(2’,y)
n+1 % n+1 %
= (Z | — Zi\2> + <Z |2 — yf)
=1 1=1

= |Tot1 = Y| + (Z |z — ?Jz’|2>

i=1

[

To apply the induction hypothesis, we define & = (z1,...,x,) and § = (y1, .., Yn)-
Then the induction hypothesis yields

(Z |$i—yi|2> = d(2,9) < Z|$z—yz|

i=1 =1
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Hence,
1
n 2
da(2,y) < |Tnt1 — Yosa| + (Z |z — yi‘2>
i=1
< T — Yol + Z |z — yil
i=1
n+1
= Z T
i=1
The assertion is proved. [ |

DEFINITION 4.5. A subset C' C X s called closed if X \ C' is open.

PROPOSITION 4.6. Let C' be closed subset of a complete metric space (X, d), then
(C,d|cxc) is complete.

PROOF. Let (x,) C C be Cauchy sequence. Since X is complete, there exists
x € X such that

r = limz, .
We have to show € C. Assume z ¢ C. Then there exists a 6 > 0 such that
B(z,d) C X \ C. By definition of the limit there exists ng such that d(z,,z) < 0

for all n > ng. Set n = ng + 1. Then d(z,,z) < § implies z, € X \ C and z,, € C
by definition. This contradiction finished the proof. [ |

THEOREM 4.7. Let (Y,d') be complete metric space. Let h € C(X,Y) and
Ch(X,Y) = {f e C(X,Y) : supd(f(x),h(z)) < oo}
zeX
Then Cy(X,Y) is complete with respect to
d(f.g) = supd'(f(x),g(v)).
zeX
PRrROOF. Let (f,) C Cr(X,Y) be Cauchy sequence. This means that for every

€ > 0 there exists an ng such that

(4.1) sup d'(fn(), fm(7)) <

zeX

DO |

In particular, for fixed x € X, f,(x) is Cauchy. Therefore f(z) := lim,, f,,(z) is a
well-defined element in Y. We fix n > ny and consider m > ng such that
£

d(fm(2), f(2)) < 3.



14 1. METRIC SPACES

This implies

(@) £@) < AUalo) fla)) + A (o). S(@) < 2
for all z € X. In particular,
(12) sup sup d'(f,(¢), f(2)) < <
n>ng r€X

Let us show that f is continuous. Let z € X and € > 0. Choose ng according to (ﬁgfl)
Choose n = ng + 1. Let 6 > 0 such that d(z,y) < § implies d'(f,(z), fu(y)) < e.

Then, we have

d(f(x), f(y)) < d(f(x), fu(@)) + d'(fa(2), oY) + d (fuly), f(y)) < 3c.

eqq2
Since € > 0 is arbitrary, we see that f is continuous. Moreover, (hﬁi implies that
eqq2
fn converges to f. Finally, (hgi for e = 1 implies that

supd(f(z), h(r)) < Sgpd(f(fﬁ),fn(fﬂ)) +s1ipd(fn(x),h(a;)) < o0

T

implies that f € Cp,(X,Y). |

DEFINITION 4.8. Let (X,d) be a metric space and C C X. O C X 1is called sense if
for ever x € C and e > 0 B(x,e) N O # (.

DEFINITION 4.9. Let O C X be a subset. Then

0 = mOCC,CclosedC

1s called the closure.
LEMMA 4.10. O is dense in O and O is closed.
PROOF. Let x € O. Assume B(z,6)NO = (. Then C = X \ B(z,¢) contains
O. Thus
OccC.
This implies that ¢ O, a contradiction. Now, we show that O is closed. Indeed,

let y ¢ O. Then there has to be a closed set C such that O C C but y ¢ C. This
means y € X \ C which is open. Hence there exists § > 0 such that

B(y,0) c X\ C

By definition every element z € B(y, §) does not belong to O. This means B(y,d) C
X\ O. ]
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THEOREM 4.11. Let (X, d) be a non-empty metric space. For every x € X we define

foly) = d(z,y) .
Let vg € X. The map f: X — Cy, (X, R) satisfies the following properties.
i) d(f(x),d(f(y)) = d(z,y),

(1) The closure C' = f(X) is complete,

(2) f(X) is dense in the closure C = f(X).
PROOF. Let z,y € X and z € X. Then the ‘converse triangle’ ineqquality
implies
|fo(2) = fy(2)| = [d(z,2) = d(y,2)| < d(z,y).
Moreover,
[fo(2) = fe(y)| = ld(z,2) —d(z,y)| < d(z,y).
Therefore f, € Cy, (X,R) for every z € X and

d(fe, fy) < d(z,y).
However,
d(fo: fy) = |falz) = fy(x)] = [0—d(y, z)| = d(y, ).

completel compl
This shows ). According to Proposition h.B and Theorem h.?, we see that C' is
d
complete. According to Lemma ﬁg, we deduce that f(X) is dense in C. |

Project: On C(]0,1]) we define

0(f.9) = / () — g(s)|ds

Show that (C([0,1]),d;) is not complete.
Project: In the literature you can find another description of the completion of a

metric space. Find it and describe it.

5. Unique extension of densely defined uniformly continuous functions

In this section we will show that the completion C' constructed in Theorem .11 is
unique (in some sense). This is based on a simple observation-the unique extension.

This principle is very often used in analysis.

DEFINITION 5.1. Let (X,d), (Y,d') be metric spaces. A function f : X — Y is

called uniform continuous if for every e > 0 there exists a 6 > 0 such that

d(z,y) <6 = d(f(x),f(y)) <e.
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PROPOSITION 5.2. Let O C C' be a dense set and f : O — Y be uniformly contin-
wous function with values in a complete metric space. Then there exists a unique
continuous function f: O — Y such that f(a:) = f(x) for all x € O.

PROOF. Let z € X. Since B(z,+)NO is not empty, we may find (z,,) C O such
that lim,, z,, = x. We try to define

Fx) = lm f(z,)

Let us show that this is well-defined. So we consider another Cauchy sequence (z,)
such that lim,, 2/, = x. Let € > 0. Then there exists 0 > 0 such that

d(f(z',y)) <e

holds for d(z,y) < 6. We may find ny such that

J
d(xp, ) < 2
and
, J
d(z),x) < 2

holds for all n,n’ > ng. Thus

d'(f(ay,), f(aa)) <e.

This argument also shows that (f(z,)) is Cauchy and hence f(z) is well-defined. If
z € O, we may choose for (z,,) the constant sequence x,, = x and hence f(z) = f(z).
Now, we want to show that f is uniformly continuous. Indeed, let € > 0, then there

exists 0 > 0 such that d(2/,y") < § implies

£

A, FW)) < 5

Given z,y € C with d(z,y) < 0, we may find (x,) converging to x and (y,) con-
verging to y such that

Thus for all n € N we have
d(Tn, yn) < d(x,y) + d(2n, ) + d(Yn,y) <0 .

This implies
d(f(x), f(y)) = limd(f(zn), f(yn)) <

DO ™
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This shows that f is uniformly continuous. If ¢ is another continuous function such
that g(z) = f(x) holds for elements x € O, then we may choose a Cauchy sequence

(x,) converging to x and get
g(z) =limg(z,) = lim f(z,) = f(z). u

Example If f : (0,1] — R is uniformly continuous, then f is bounded (why).

f(z) = 1/x is not uniformly continuous.

THEOREM 5.3. The completion of a metric space is unique. More precisely, let C' be
comp2

the set constructed in Theorem [].1 7 Let C' be a complete metric space and ' : X —

C" be uniformly continuous with uniformly continuous inverse '~ : 1(X) — X such

that J'(X) is dense. Then there is a bijective, bicontinuous map u : C — C" such

that u(u(x)) = (x).

1

PROOF. The map /' : «(X) — C" is uniformly continuous and hence admits

a unique continuous extension u : ¢ — C’. Also «/~" : /(X) — C admits a
unique extension v : ¢/ — C. Note that vu : C — C is an extension of the map
vu(e(x)) = ¢(x). Thus there is only one extension, namely the identity. This show

vu = id. Similarly uv = id. Thus v = u~! and u is bijective and bi-continuous. M

Project: Find the completion of (Z, d3).

6. A famous example

In this section we want to identify the completion of C([0, 1]) with respect to

1

d(f,g) = /!f(t)—g(t)|dt.

0

We will also use the function

defined by the Riemann integral.

LEMMA 6.1. I s uniformly continuous.

PRroor. It suffices to show that

1(f) < / F(8)dt
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(This implies that I is 1-Lipschitz, i.e.
1(H) — I(g)] < di(f.9) )
We define f+ = max{f,0} and f~ = max{—f,0}. Then we have
1) = 1) = 107) < 16D +1067) = 10f) = [ 15wt
Similarly, we may show that
1) = 1) = 10) = ~1G") = 1) = ~1f) = = [ I7(0lat.
The assertion follows.

The characteristic function is given by

1 ifzeA

1A($) = ) .
0 ifxgA

LEMMA 6.2. I(1jay) = b—a.

ProOOF. We only consider [a, b] = [0,b]. For 2/n < b we define

nt ift<i
falt) = 41 ifl<t=0pp-1
n(b—t)
Then we deduce that for m > n we have
1 1
11 ’ 11 1 1 1
dl(fn,fm)ZQ/mtdt—l-——E— ntdt:2<%+ﬁ_a_%):ﬁ_
0 0
Thus (f,) is Cauchy and
1
hrn/fn hmb——:b.
n

For general a we simply shift.

In the following we denote the length of an interval by

lla,b]] = b—a.
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chy| LEMMA 6.3. Let f be a continuous positive function on [0,1], A > 0 and € > 0.

Then there exists intervals Jy, ...., J,, such that
{t : ft) >AyC J1U---Jg

and

1
;uk\ < A_25/f(t>dt.

PROOF. Let € < % Since f is uniformly continuous, we may find n € N such
that |z — y| < 1/n implies
[f(x) = fly)l <e.

We define 2, = k/n. Let S = {k: f(xy) > A—¢c}. Let t € [0,1] such that f(t) > A.
We consider k = [tn]. Then 2, —t < 1 and hence

flag) > f(t) —e>A—c¢.

Therefore

{t: f(t) > A} € Jlww, 2rsa] -

kes
However, f(xr) > A —¢ implies f(t) > A —2¢ for all ¢ € [z, xx41]. By the definition

of the lower sums we deduce

/f(t)dt > S (= 26) il

kes
Since A — 2 > 0, we deduce the assertion. [ |
DEFINITION 6.4. i) A subset A C [0,1] is said to have measure 0 if for every

e > 0 there exists a sequence (Jy) of intervals such that

Ac|Jd and D |l <e.
k k

i) A sequence (f,) converges almost everywhere (a.e.) to a function f if there

exists a set A of measure 0 such that
liTan fu(t) = f(t)

for allt € A°=10,1] \ A.
PROPOSITION 6.5. Let (f,) be a di-Cauchy sequence. Then there exists a subse-

quence (ny) and a function f such that f,, converges to [ a.e.
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PROOF. We may choose (ny) such that

dl(fnkafnk+1> < 6_k.

h _ _
Let us denote g, = f,,. We apply Lemma Hto A=2"%and ¢ = 2 kg?’ * and find

intervals J¥, ..., Jj%(k) such that

6—k
Jl < ——— =97k
z;' i< 2-k — 2

and
{t €[0,1] : gr(t) = gra(t)] > 27"} C U he
l
We define
Ak — U U‘]ln
n>k 1
and

A:ﬂAk.
k

Then, we see that A C A, and

YDPDILIIED R

n>k 1l n>k
Thus shows that A has measure 0. For ¢t ¢ A, we may find k such that for all n > k
we have ¢ ¢ | J; J/*. This implies

9n(t) = gna(t)] < 277

for all n > k. In particular, (gx(t)) is Cauchy for all t € A°. We may define

0 else

Then (gx) converges to f almost everywhere. [ |

This leads us to define the set of possible limits.
L ={f:]0,1] =R : 3(f,) C C[0,1], f,, converges to f a.e.}

on L we define the equivalence relation f ~ ¢ if there exists a set A of measure 0
such that flc = g1 4c.
Exercise: Show that ~ is an equivalence relation.
We define
L =1L/~
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For a function f € £ we define the equivalence class [f] = {g : ¢ ~ f}. In the
following we denote by X the completion of C[0, 1] with respect to the d;-metric.

Our main theorem is the following.

THEOREM 6.6. There is an injective map v : X — L such that

holds whenever (f,) is a Cauchy sequence converging to x (with respect to dy) and

converging to f. a.e. Moreover, I can be extended to 1(X).

Problem: Give a description of ¢(X;). This is done in the real analysis course
(441=540).
We need some more preparation.

LEMMA 6.7. Let A =J, Ji the union of intervals.
i) Let f € C[0,1], then fla € X, flae € X and

di(fla,914) < di(f,9)
and
di(flac,glac) < di(f,9g).

ii) There is are continuous maps my : X — X, mac : X — X such that
ma(f) = fla and mac(f) = flac for f € C[0,1].

iii) There is a Lipschitz map add : X x X — X such that add(f,g9) = f +g.

iv) add(ma(z),mac(z)) = x for allz € X.

V) di(flac,0) < sup,eqe |f(2)]-

ProoF. We will start with 1) for A = [a, b]. We use the functions Let f,, defined
for [0,b — a] and define ¢,(t) = f.(t —a). Then we see that for every f € C|0, 1]

we have

dy(f fus f fm) =/|f(t)(fn(t)—fm(t))|dt < Sgp|f(t)|d(fn7fm)

1
m

S|

< sup[f(B)ldi(fu, fm) < sup[F(H)] ( ) -

Thus (ff,) is Cauchy. We denote the limit by flj,4. (Moreover, ff, converges
pointwise to f1j,.) Now, we observe that |f,,(¢)] < 1 and hence

1
4 FUas 9ian) =l (£ o gf) = T [ £,(005(0) = g(0))
0
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1

< / F(8) — g(t)ldt = di(f.q) .

0
u-ext
By Proposition %.2 we find a map u : X — X such that uu(f) = f1la and

di(ua(z),ua(y)) < di(z,y) .
Now, we will prove iii). The metric on X x X is given by
d((ﬂ?, y)a (xla ?/)) = dl(xa iL'/) + dl(yv y/) .

Now, we consider add : C[0,1] x C[0,1] — C[0,1] and want to show that add is

uniformly continuous. Indeed, elementary properties of the integral imply

4, (add(f,g), add(f",g')) = / (F +9)— (f +o)ldt

1 1
< [|f=flldt+ [ |g—4dldt = d((f,q9),(f.9).
fir=rie ]

o %—Zex_t : L .
Thus Proposition b.2 implies the assertion iii). In the nest step we prove i) for
A= J,U---UJ, The key observation here is that we can find new intervals

Ji,....,J}, such that the J] only overlap in one point and
A=]JJ.
!
Therefore, we may define

ua(z) = ZlJ{x = add(1yx,add(1yx, - -add(1; @, 15 x)--).
=1

Being a composition of continuous function that is continuous. Moreover, for every
[ we may consider the sequence of function f! constructed for the interval J;. The

function .
Falt) = fLt)
=1

is positive, continuous and vanishes in the overlapping endpoints. Hence 0 < f,,(t) <

1 and the argument from above shows

dl(fnf7 fng) S dl(fag) :
This yields
di(fla,g9la) = h]{lfldl(ffmgfn) < di(f,9) -
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Then we define

flac = f—fla = limadd(f,—ff,) = lim f(1— f).

Since 0 <1 — f, <1 we also prove as above that

di(flac,g1lac) < di(f,9g).

Therefore i) is proved for A being a finite union of intervals. Let us show iv) for this

particular case. Indeed,

We need an additional estimate for showing the general case:
(6.1 4(F14,0) < sup | FO] 31l
€ k

Indeed, inductively we may choose the non-overlapping J; in groups Ji,...,J;,

/
Jl 115 Jiy,s - such

Iyt

ST < L.

I=lk_1+1
Then, we have

1 1
d(710,0) =t [ 11,50l < sup|(0) i [ £
0 0

=sup| ()] Y| < sup |[F()] D 1l -
teA ! teA &

Now, we consider the general case A = |J, Jy. We define A4, = ngn Jp. We

want to show that f1,, is Cauchy. For this we choose non-overlapping intervals
, , 8-cont

i 1155 Ji, C Jr. Then, we deduce from (%l ) that for n <m

m lg m
62)  di(flaSla) < swlfO Y Y 1< swliol Y 1.

k=n+11l=l_1+1 k=n-+1

Thus we may define fl14 = lim,, f14,. Again, we have

di(fla,gla) = hTandl(flAmglAn) < di(f,9).

By the unique extension principle, we find a Lipschitz map u4 : X — X such that
ua(f) = fla. We use the unique extension principle to define —x and the define
uae(x) = add(z, —ua(zx)). For f,g € C[0,1] we have

di(uac(f),uac(g)) = 1irflﬂd1(f1AfL791Ag) < di(f,9) .
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Thus by unique extension this also holds for z,y € X. Finally, we note that for
feco]

add(fla, flac) = add(fla,add(f,—f14)) = limadd(fla,,add(f,—f1a,) = f.

Indeed, the equality holds for every n € N. Now, we will prove v). We may assume

that
A= J
k
such that the J,’s are non-overlapping. We define

A, = UJk.

k<n

Let € > 0 and 6 > 0 such that

€
=l <d = 1B~ Fe) <.
Now, we consider = € A such that
cy — o >
dz, A7) = infle—y| > 6

This means that
B(x,6) = | JJiN B(x,9) .
k
This implies
lim |B(z,0) NAS| = 0

Moreover, we can find a maximal family x1, ..., z,, of such points such that d(x, A) >

d implies d(z, z;) < 0 for some j. Then, we may choose n large enough such that

n

Sttlplf(t)| > Bz, 0) NAY < -

=1

[\]

Now, we define D = {J; B(z;,8). Since AS N D¢ is again a collection of intervals we
see that

di(f1laz,0) < di(flazap,0) +di(flaznpe,0)

= o
Ssgplf(t)\Z!B(ij@)ﬂAiH sup [ f(£)[ .

teAgnDe
Now, we consider ¢ € AS N D°. If d(t, B) > 4, then d(t,z;) < £ hence t € D. Thus

we may assume d(t, B) < 2. Then we find s € B such that |t — s| < § and thus

f(t)] < sup|f(s)] +e.

seB
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This implies

3
di(flag,0) < 5 +e+sup|f(s).
n 2 seB

for n > ng. The assertion is proved. [ |

REMARK 6.8. For J = [a,b] we have
1(F L) / F(t)dpl

LEMMA 6.9. Let (A,,) be a sequence such that
- U Jr
k

and

lim > "' = 0

"

Then

limd;(xz14,,,0) = 0
holds for every x € X.

PROOF. Let (f,) be Cauchy sequence converging to z. Let ¢ > 0. Then, we

may choose n such that
dl(fvm 1:) <

Since u4,, is Lipschitz, we deduce

DN ™

di(fala,,ua,, (7)) <

8_
for all m € N. According to (% [} e find

dl(fn]-AmaO) < Sup|fn Z

k

DO ™

By assumption, we may find mq such that

dl(fnlAmv 0) <

DN ™

holds for all m > mgy. This implies

d1<uAm($),O) < dl(uAm<x)7fn1Am) +d1(fn1Am70) <e

for all m > my. [ |
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inj
PROOF OF THEOREM %_% Let (f,), (gn) be Cauchy such that d; —lim,, f, =z
and d; — lim, g, = y and f, converges to f and g, converges to g a.e. We consider

h!, = fn— gn and z = add(z,—y). We want to show
dl(ZE, 0) =0.

Clearly, h!, converges to 0 almost everywhere. Passing to subsequence (hy) we may
. ~ . Limiti1
assume that dy(hg, hry1) < 6™ According to the proof of Proposition %.5, we find

Ay, =, JI such that
D Gl < 2t
!

such that
() = hnia ()] < 27"
for all ¢t ¢ Ay. By the definition of a.e. we find By, =, JF such that
Gl < 2t
!
and
li{n hn(t) = 0
holds for all £ ¢ By. Thus we define
¢, = JJulJ L
I !
Then
DoAY < 22
! l
and for all ¢ ¢ C}, we have
()] = [lim Ay, (t) — b (t)] < Lmsup [, (t) — hp(8)] < 2877
According to Lemma (ta.ﬁr) e find a ko such that
di(uc, (2),0) < ¢
for all £ > ky. For all n > k£ we deduce from Lemma %H.l% %uﬁeaequt
di(lee fn,0) < 2077,

Therefore
dl(ucg(z),()) = 1iy{nd1(uc,g(fn),0) = 0.

Since r = add(uce (), uce (v)), we deduce

di(z,0) = dy(add(uc, (2), ucg(z)), add(uc, (0), u(;g(O)))
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< di(uc,(2),0) + di(uce(2),0) <.

Finally, we observe that
dl(l.a y) = dl (add(w, _y)> O)

holds by unique extension. Thus z = y.

27
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7. Closed and Compact Sets

Let (X, d) be a metric space. We will say that a subset A C X is closed if X \ A is

open.

PROPOSITION 7.1. Let (X,d) be a complete metric space and C C X a subset. C
15 closed iff every Cauchy sequence in C' converges to an element in C.

Proof: Let us assume C'is closed and that (z,,) is a Cauchy sequence with elements

in C. Let x = lim, x, be te limit and assume x ¢ C. Since X \ C' is open
B(z,e) c X\ C

for some € > 0. Then there exists an ng such that d(x,,z) < € for n > ng. In

particular,
Tno+1 S B(.T, €)

and thus z,,.1 ¢ C, a contradiction.

Now, we assume that every Cauchy sequence with values in C' converges to an
element in C. If X \ C is not open, then there exists an x ¢ C and no € > 0 such
that

B(z,e) c X\ C.
Le. for every n € N, we can find x,, € C such that
1
d(z,z,) < —.
(r,20) <
Hence, limz,, = z € C but z ¢ C, contradiction. [ |

The most important notion in this class is the notion of compact sets. We will say

that a subset C' C X is compact if For every collection (O;) of open sets such that

CCUOZ = {ZE€X|E|7;E[£L'EOZ‘}

There exists n € N and 74, ..., ¢, such that
CCOhU"'UOin.

In other words

Every open cover of C' has a finite subcover .
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DEFINITION 7.2. Let X C |JO; be an open cover. Then we say that (V;) is an open

subcover if
xclJy
J
all the V; are open and for every j there exists an i such that
V; CO,.

It is impossible to explain the importance of ‘compactness’ right away. But we can
say that there would be no discipline ‘Analysis’ without compactness. The most

clarifying idea is contained in the following example.
PROPOSITION 7.3. The set [0,1] C R is compact.

Proof: Let [0,1] C |J; O;. For every x € [0, 1] there exists an ¢ € I such that
x € O;.
Since O; is open, we can find € > 0 such that
x € B(x,e) CO; .
Using the axiom of choice, we fine a function €, and i, such that
xr € B(x,e,) C O, .
Let us define the relation <y if x < y and
y—x < eptey,.
The crucial point here is to define
S ={zel0,1]|Tx1,....;z :

=x; =<z, ).

We claim a) sup S € S and b) sup S = 1.
Ad a): Let y =sup S € [0,1]. Then there exists an x € S with

y—eg,<xr<y.

Then obviously x < y. Since x € S, we can find
%jmjmjxnjxjy.

Thus y € S.

Ad b): Assume y =sup S < 1. Let 0 < § = min(e,, 1 —y). Then

y+5_y = 5 S €y+5y+5'
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By a), we find
Sr 2 Rr, Ry 2y+d

and thus y + 0 € S. Contradiction to the definition of the supremum.

Assertion a) and b) are proved.

Therefore we conclude 1 € S and thus find x4, ..., x,, such that

1

§ﬁl’1ﬁ"'j$nﬁ1-

Let x¢g = % and x, .1 = 1, then by definition of <, we have

[, 4] C B(%‘a%) U B(xjﬂvgz]‘ﬂ) = Oi%‘ Vo

bzt
for 7 =0,..,n. Thus, we deduce

n n+1
1

51 C Ulzs, 2zl c J 0,
=0

=0
Doing the same trick with [0, 5], we find

m+1 n+1

[0, 1] C U Oizl. U U Oizj
=0 7 j=0
and we have found our finite subcover.
PROPOSITION 7.4. Let B C X be closed set and C' C X be a compact set, then

BNnC

18 compact

Proof: Let BN C C |JO; be an open cover. then

Cc(x\BulJo

is an open cover for C', hence we can find a finite subcover
C C (X\B)UO“UUOZTL .

Thus
BNnC CcO;;U---UO

in

is a finite subcover.
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LEMMA 7.5. Let (X,d) be a metric space and D C X be a countable dense set in

X, then for every subset C C X and every open cover
ccljo

we can find a countable subcover of balls.

Proof: Let us enumerate D as D = {d,|n € N}. Let z € C and find i € I and
¢ > 0 such that

x € B(x,e) CO; .
Let £ > g By density, we can find an n € N such that

1

Then

1 1
B — B(x, - B i -
x € B(d,, 2]{;) C B(x, k) C B(x,e) C O,

Let us define

1
M = {(n.k) | Bier Bldns 5p)

Then M C N? is countable and hence there exists a map ¢ : N — M which is

C O;}.

surjective (=onto). Hence for V,,, = B(dg,(m), m), ¢1, ¢2 the 2 components of

¢ we have
cclJva
and (V},,) is a countable subcover of balls of the original cover (O;). u

THEOREM 7.6. Let (X,d) be a metric space. Let C' C X be a subset. Then the

following are equivalent

i) a) Every Cauchy sequence of elements in C' converges to a limit in C.

b) For every € > 0 there exists points 1, ..., x, € X such that
C C B(zy,e)U---U B(z,¢) .

ii) Every sequence in C' has a convergent subsequence.
iii) C' is compact.
Proof: i) = ii). Let (z,,) be a sequence. Inductively, we will construct infinite

subset A1 D Ay D Asz--- and y1, Y, ¥3,... in X such that

vleAj : d(xl,yj) <2771
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Put Ag = N. Let us assume A; D Ay D --- A, and v, ..., y, have been constructed.
We put ¢ = 2772 and apply condition 7)b) to find zy, ..., z,, such that

C C B(z1,e)U---UB(zp,€) .
We claim that there must be a 1 < k < m such that
Ap(k) = {l € A, |z, € B(z,¢)}
has infinitely many elements. Indeed, we have
A,(MHU---UA,(m) = A,.

If they were all finite, then a finite union of finite sets would have finitely many
elements. However A, is infinite. Contradiction! Thus, we can find a k with A, (k)
infinite and put A, = A, (k) and y,+1 = 2. So the inductive procedure is finished.

Now, we can find an increasing sequence (n;) such that n; € A; and deduce

1 . 1 . .
d<xnj’ x"j-&-l) < d(xnﬁyj) + d(yj7 xnj+1) < 52_] + 52_] = 277

because n; € A; and nj1 € Aj 1 C Aj. Thus (z,,;) is Cauchy. Indeed, be induction,
we deduce for 7 < m that

d(wnjv :Unm) < d<$n] ) xanrl) + d(xanrl’ xnj+2) T d(xnm—l7$nm)

m—1
< 29y 27 =9l
k=0

This easily implies the Cauchy sequence condition. By a) it converges to some
x € C'. We got our convergent subsequence.

i1) = 1ii): We will first show i) = ¢)b). Indeed, let € > 0 and assume for all n € N,
Y1, - Yn € C' we may find

z(n,y1, -, Yn) € C\ (B(y1,€) U+~ B(yn,€)) -

Then we define z; € C and find 2, € C'\ B(z1,¢). Then we find z3 € C'\ B(z1,¢) U
B(z9,¢). Thus inductively we find z,, € C' such that

d(xnv $k) Z €

forall 1 < k < n. It is easily seen that (z,) has no convergent subsequence. Thus 7)b)

is showed (with points in C'). For every g, = % we find these points y¥, ..., yffl(k) eC
such that
1 1
C CByf, ) U UBW™Y, 2) .
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Then, we see that D = {yf ck e N1 <j<m(k)} is dense in C. Therefore, we
may work with the closure X = D and show that C'is compact in X. (It will then

CCC
be automatically compact in X'). By Lemma bﬁ, we may assume that
cclJo
k
and Oy’s open. If we can find an n such that

CcOU---uo,

the assertion is proved. Assume that is not the case and choose for every n € N
an x, € C'\ Oy U---UQO,. According to the assumption, we have a convergent
subsequence, i.e. limyz, = x € C. Then z € O,, for some ny and there exists a
€ > (0 such that

B(z,e) C Oy, .

By convergence, we find a ko such that d(z,x,,) < € for all & > ky. In particular,

we find a k > kg such that n, > ng. Thus
Ty, € B(z,e) € Opy COLU---UO,, .

Contradicting the choice of the (z,)’s. We are done.
iii) = 1)b) Let € > 0 and then

C C U B(x,e) .
zeC
thus a finite subcover yields b).

i1i) = i)a) Let (z,) be a Cauchy sequence. Assume it is not converging to some

element z € C. This means

(7.1) Vo e Cde(x) > 0VnoIn > ng d(x,,z) > €.
Then
CcUB@%%.
zelC
Let
5 £
¢ By, Wy U u By, S8

2
be a finite subcover (compactness). Then there exists at least one 1 < k < m such

that

A = €N d(r,p) < )
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is infinite. Fix that k& and apply the Cauchy criterion to find ngy such that

d(xp, xp) < @

CCCC
for all n,n’ > ng. By (7.1), we can find an n > ng such that

d(xn, yr) > (yx) -

Since A, is infinite, we can find an n’ > ng in A, thus

elye) < dlrw,yp) < d(@n, ww) + d(@w,; yr)

A contradiction. Thus the Cauchy sequence has to converge to some point in C. B
COROLLARY 7.7. Every intervall [a,b] C R with a < b € R is compact

. . . closed . .
Proof: It is easy to see that X \ [a,b] is open. Hence, by Proposition 7.1 [a, b] is

complete, i.e. i)a) is satisfied. Given & > 0, we can find k > 1. For m > k(b—a) we

derive
J
,b)C | | B =€),
ol e Ut .0
Thus the Theorem ;éBlnapplies. [ |
LEMMA 7.8. Letr > 0 and n € N, the set C, = [—r,r]|" is compact.

Proof: Let x ¢ C,, then there exists an index j € {1,..,n} such that |z;| > r. Let
e = |z;| —r and y € R™ such that

max |z; —y| <e,

then
il = ly; — @+ x| = oyl =y — 5] > gl —e = 7.
. . o rncom
thus y ¢ C,. Hence, C, is closed and according to Proposition h.B, we deduce that
C, is complete.
For n =1 and ¢ > 0, we have seen above that for k > % and m > 2%
" J
—r,r] C B(—r+=,¢).
rrl e UB(r+ L9
7=0
Therefore

Frte U Bal(or s o))
J1---Jn=0,...m ain
Thus i)a) and i)b) are satisfies and the Theorem 7 implies the assertion (The

separable dense subset is Q™.) [ |
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THEOREM 7.9. Let C' C R™ be a subset. The following are equivalent

1) C is compact.

2) C is closed and there exists an r such that
C C B(0,R) .

(That is C' is bounded.)
Proof: 2) = 1) Let
C C B(0,R) C [-R,R]"

subcom
be a closed set. Since [—R, R]™ is compact, we deduce from Proposition [7.4 that C

is compact as well.

1) = 2) Let C subset R™ be a compact set. According to Theorem F?%%)b), we find
C C B(xy,1)U---UB(zp,1)
thus for r = max;—y,__,,(d(z;,0) + 1) we have
C C B(0,r) .

i losed
Moreover, by Theorem ;?6111)51) and Proposition (5 ,sszve deduce that C is closed. ®

We will now discuss one of the most important applications.

THEOREM 7.10. Let (X, d) be a compact metric space and f : X — R be a continuous
function. The there exists xo € X such that

f(zo) = sup{f(x):z € X}.
PROOF. Let us first assume
A={f(z):z € X}

is bounded and s = sup A. For every n € N, we know that s — % is no upper bound.
Hence there z,, € X such that

1
s> flay) >s——.
n
Let (ng) be such that limy x,, =2 € X. Then we deduce from continuity that

1
f(z) = lim f(z,,) > lims — — = s.
k nk
By definition of s we find f(x) = s. Now, we show that A is bounded. Indeed, if

note we find z,, € X such that f(z,) > n. Again we find a convergent subsequence
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(@n, ). Since f(xy,) is convergent it is bounded. We assume (f,, ) is bounded above

by m € nz. Choosing k > m + 1 we get
m > f(Tn,) > Nk > Ny, > M.

This contradiction shows that A is bounded and hence the first argument applies. B



