Bessel functions

The Bessel function J,(z) of the first kind of order v is defined by
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For v > 0 this is a solution of the Bessel differential equation
2y (2) + 29/ (2) + (22 =) y(z) =0, v=>0. (2)

For v ¢ {0,1,2,...} we have that J_,(z) is a second solution of the differential equation (2)
and the two solutions J,(z) and J_,(z) are clearly linearly independent.
For v =n €{0,1,2,...} we have
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This implies that J,(z) and J_,(2) are linearly dependent for n € {0,1,2,...}.

A second linearly independent solution can be found as follows. Since (—1)" = cosnw, we see
that J,(z) cosvm — J_,(z) is a solution of the differential equation (2) which vanishes when
v=ne€{0,1,2,...}. Now we define

Y, (2) = Jy(2) CoS VT — J,,,(z)’ 3)
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where the case that v = n € {0,1,2,...} should be regarded as a limit case. By I’'Hopital’s

rule we have
Y.l = I Yi(e) = - [ajy(z)] (e [aJ_y(z)] |
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This implies that Y_,,(z) = (—=1)"Y,(2) for n € {0,1,2,...}.
The function Y, (z) is called the Bessel function of the second kind of order v.
Using the definition (1) we find that
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where

For v ¢ {0,1,2,...} we have
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Now we use
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Finally we use the fact that J_,(2) = (—1)"J,(2) to conclude that
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for n € {0,1,2,...}. Compare with the theory of Frobenius for linear second differential
equations.



In the theory of second order linear differential equations of the form
y" +p(2)y +a(z)y =0,
two solutions y; and s are linearly independent if and only if
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‘ = y1(2)ya(2) — y1(2)y2(2) # 0.

This determinant is called the Wronskian of the solutions y; and y».
It can (easily) be shown that this determinant of Wronski satisfies the differential equation

W'(2) + p(2)W(z) = 0.

This result is called Abel’s theorem or the theorem of Abel-Liouville. In the case of the Bessel
differential equation we have p(z) = 1/z, which implies that
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for some constant ¢. Now we have
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For v > 0 this implies that J,(z) and J_,(z) are linearly independent if v ¢ {0,1,2,...} and

that J,(z) and Y, (z) are linearly independent for all v > 0.
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Now we use the definition (1) to obtain
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Hence we have
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Hence we have

dci[ I (2)] =2V duo1(2) = 2JL(2) +vdy(2) = 2d,-1(2). (5)

Similarly we have
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Elimination of J/(z) from (5) and (6) gives
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and elimination of J,(z) from (5) and (6) gives

Jo-1(2) = Juy1(2) = 2J),(2).



Special cases

For v = 1/2 we have from the definition (1) by using Legendre’s duplication formula for the
gamma function
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and for v = —1/2 we have
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Note that the definition (3) implies that

Yijp(w) = —J_1)0(z) = —\/z cosw and Y_j.(x) = Jyja(x) = % sinz, «>0.
Integral representations
First we will prove
Theorem 2.
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Proof. We start with
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Note that the latter integral vanishes when n is odd. For n = 2k we obtain using t*> = u
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Now we use Legendre’s duplication formula to find that
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We also have Poisson’s integral representations

Theorem 3.
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Proof. Use the substitution ¢ = cos @ to obtain
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Further we have
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This shows that Poisson’s integral representations follow from the integral representation (7).

Remarks:

1. The Fourier transform is defined by
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with inversion formula
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This implies that the Fourier transform of the function
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2. Instead of the substitution ¢ = cosf in (7) one can also use the substitution ¢ = sin6,
which leads to slightly different forms of Poisson’s integral representations. In fact we

have
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Integrals of Bessel functions

The Hankel transform of a function f is defined by
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for functions f for which the integral converges. The inversion formula is given by
o
F(t) = / P (), (st) ds.
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This pair of integrals is called a Hankel pair of order v.

An example of such an integral is
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It can be shown that the integral converges for Re(p 4+ v) > 0. Now we use the definition (1)
to obtain
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The special case p = v + 2 is of special interest: in that case we have (u+v)/2 = v+ 1. This
implies that the 1 F; reduces to a ¢Fy which is an exponential function. The result is
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Hankel functions

The functions H,Sl)(z) and Hl@(z) are defined by
HMN(2) == J,(2) +iYy(2) and H{P(2) = J,(2) — iV, (2).

These functions are called Hankel functions or Bessel functions of the third kind.
Note that these definitions imply that
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Further we have
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Similarly we have
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Modified Bessel functions

The modified Bessel function I,,(z) of the first kind of order v is defined by
2

For v > 0 this is a solution of the modified Bessel differential equation
29" (2) + 29/ (2) — (Z* + 1) y(z) =0, v >0.
For v ¢ {0,1,2,...} we have that I_,(z) is a second solution of this differential equation and
the two solutions I,(z) and I_,(z) are linearly independent.
For v =n€{0,1,2,...} we have I_,,(z) = I,,(2).
The modified Bessel function K, (z) of the second kind of order v is defined by
[I_,(z) = I,(z)] for v¢{0,1,2,...}
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and
Kp(z) = lim K,(z) for ne{0,1,2,...}.
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Now we have for z > 0
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A generating function

The Bessel function J,,(z) of the first kind of integer order n € Z can also be defined by means
of the generating function

exp(iz t—t1> Z I (8)

n=—oo
In fact, the series on the right-hand side is a so-called Laurent series at ¢ = 0 for the function
at the left-hand side. Using the Taylor series for the exponential function we obtain
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If t = €%, then we have
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Since J_p(x) = (—1)"J,(x) this implies that
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For 8 = 0 we also have
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The generating function (8) can be used to prove that
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The proof is as follows:
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We can also find an integral representation for the Bessel function J,(z) of the first kind of
integral order n starting from the generating function
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We use the orthogonality property of the exponential function, id est
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Hence we have
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The special case n = 0 reads

T 1
Jo(z) = ! cos (zsinf) df = 2 cos(xt) db.
7 Jo 7 /o
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